Article | Published:

Coherence time of over a second in a telecom-compatible quantum memory storage material

Nature Physics volume 14, pages 5054 (2018) | Download Citation

Abstract

Quantum memories for light will be essential elements in future long-range quantum communication networks. These memories operate by reversibly mapping the quantum state of light onto the quantum transitions of a material system. For networks, the quantum coherence times of these transitions must be long compared to the network transmission times, approximately 100 ms for a global communication network. Due to a lack of a suitable storage material, a quantum memory that operates in the 1,550 nm optical fibre communication band with a storage time greater than 1 μs has not been demonstrated. Here we describe the spin dynamics of 167Er3+: Y2SiO5 in a high magnetic field and demonstrate that this material has the characteristics for a practical quantum memory in the 1,550 nm communication band. We observe a hyperfine coherence time of 1.3 s. We also demonstrate efficient spin pumping of the entire ensemble into a single hyperfine state, a requirement for broadband spin-wave storage. With an absorption of 70 dB cm−1 at 1,538 nm and Λ transitions enabling spin-wave storage, this material is the first candidate identified for an efficient, broadband quantum memory at telecommunication wavelengths.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Quantum communication. Nat. Photon. 1, 165–171 (2007).

  2. 2.

    The quantum internet. Nature 453, 1023–1030 (2008).

  3. 3.

    , , & Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

  4. 4.

    et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313–316 (2016).

  5. 5.

    et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nat. Photon. 9, 83–87 (2015).

  6. 6.

    et al. A quantum memory with telecom-wavelength conversion. Nat. Phys. 6, 894–899 (2010).

  7. 7.

    et al. Entanglement of light-shift compensated atomic spin waves with telecom light. Phys. Rev. Lett. 105, 260502 (2010).

  8. 8.

    , , , & A waveguide frequency converter connecting rubidium based quantum memories to the telecom C-band. Nat. Commun. 5, 3376 (2014).

  9. 9.

    et al. Storage of up-converted telecom photons in a doped crystal. New J. Phys. 16, 113021 (2014).

  10. 10.

    et al. Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory. Phys. Rev. X 7, 021028 (2017).

  11. 11.

    et al. Broadband waveguide quantum memory for entangled photons. Nature 469, 512–515 (2011).

  12. 12.

    et al. Quantum storage of photonic entanglement in a crystal. Nature 469, 508–511 (2011).

  13. 13.

    et al. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat. Photon. 8, 775–778 (2014).

  14. 14.

    et al. Storing a single photon as a spin wave entangled with a flying photon in the telecommunication bandwidth. Phys. Rev. A 93, 022316 (2016).

  15. 15.

    , , & Generation of light with multimode time-delayed entanglement using storage in a solid-state spin-wave quantum memory. Phys. Rev. Lett. 117, 020501 (2016).

  16. 16.

    et al. Coherent spin control at the quantum level in an ensemble-based optical memory. Phys. Rev. Lett. 114, 230502 (2015).

  17. 17.

    , , , & Solid state spin-wave quantum memory for time-bin qubits. Phys. Rev. Lett. 114, 230501 (2015).

  18. 18.

    et al. Multiplexed on-demand storage of polarization qubits in a crystal. New J. Phys. 18, 013006 (2015).

  19. 19.

    , , & Efficient quantum memory for light. Nature 465, 1052–1056 (2010).

  20. 20.

    , , & Efficient quantum memory using a weakly absorbing sample. Phys. Rev. Lett. 110, 133604 (2013).

  21. 21.

    et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

  22. 22.

    et al. Identification of Λ-like systems in Er3+ : Y2SiO5 and observation of electromagnetically induced transparency. Phys. Rev. B 81, 144303 (2010).

  23. 23.

    et al. Zeeman-level lifetimes in Er3+ : Y2SiO5. Phys. Rev. B 78, 085410 (2008).

  24. 24.

    , , & Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. Nat. Commun. 1, 1010 (2010).

  25. 25.

    , , & Spectral hole burning and holography in an Pr3+ : Y2SiO5 crystal. Phys. Rev. B 47, 14741–14752 (1993).

  26. 26.

    et al. Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+ : Y2SiO5. Phys. Rev. B 68, 085109 (2003).

  27. 27.

    et al. Telecommunication-wavelength solid-state memory at the single photon level. Phys. Rev. Lett. 104, 080502 (2010).

  28. 28.

    , , , & Electro-optic quantum memory for light using two-level atoms. Phys. Rev. Lett. 100, 023601 (2008).

  29. 29.

    , , & Large efficiency at telecom wavelength for optical quantum memories. Opt. Lett. 39, 2711 (2014).

  30. 30.

    , & Quantum repeaters with imperfect memories: cost and scalability. Phys. Rev. A 80, 032301 (2009).

  31. 31.

    , , & Effects of magnetic field orientation on optical decoherence in Er3+ : Y2SiO5. Phys. Rev. B 79, 115104 (2009).

  32. 32.

    & EPR and spin-lattice relaxation of rare-earth activated centres in Y2SiO5 single crystals. Physica B+C 101, 233–238 (1980).

  33. 33.

    et al. Hyperfine interaction of Er3+ ions in Y2SiO5: an electron paramagnetic resonance spectroscopy study. Phys. Rev. B 74, 214409 (2006).

  34. 34.

    & Electron Paramagnetic Resonance of Transition Metal Ions Ch. 10, 2nd edn (Dover, 1970).

  35. 35.

    , , & Optical decoherence and spectral diffusion at 1.5 μm in Er3+ : Y2SiO5 versus magnetic field, temperature, and Er3+ concentration. Phys. Rev. B 73, 075101 (2006).

  36. 36.

    et al. Direct observation of rare-earth-host interactions in Er3+ : Y2SiO5. Phys. Rev. B 76, 180408 (2007).

  37. 37.

    et al. Coherent storage of microwave excitations in rare-earth nuclear spins. Phys. Rev. Lett. 114, 170503 (2015).

  38. 38.

    , , , & Realization of reliable solid-state quantum memory for photonic polarization qubit. Phys. Rev. Lett. 108, 190505 (2012).

  39. 39.

    et al. Cavity-enhanced room-temperature broadband Raman memory. Phys. Rev. Lett. 116, 090501 (2016).

  40. 40.

    et al. Broadband noise-free optical quantum memory with neutral nitrogen-vacancy centers in diamond. Phys. Rev. B 91, 205108 (2015).

  41. 41.

    , , , & A solid-state light-matter interface at the single-photon level. Nature 456, 773–777 (2008).

Download references

Acknowledgements

M.J.S. would like to thank C. Thiel for insightful discussions. This work was supported by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (Grant No. CE110001027). M.J.S. was supported by an Australian Research Council Future Fellowship (Grant No. FT110100919).

Author information

Affiliations

  1. Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia

    • Miloš Rančić
    • , Rose L. Ahlefeldt
    •  & Matthew J. Sellars
  2. Physics, Princeton University, Princeton, New Jersey 08554, USA

    • Morgan P. Hedges

Authors

  1. Search for Miloš Rančić in:

  2. Search for Morgan P. Hedges in:

  3. Search for Rose L. Ahlefeldt in:

  4. Search for Matthew J. Sellars in:

Contributions

M.J.S. and M.P.H. conceived the initial project. M.J.S., M.P.H. and M.R. designed the experimental set-up. M.R. carried out the experiment. M.R. and R.L.A. analysed the results. All authors contributed to writing the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Miloš Rančić.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys4254