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Strongly coupled plasmas obey the fluctuation
theorem for entropy production
Chun-Shang Wong*, J. Goree, Zach Haralson and Bin Liu

Fluctuation theorems1–4 describe nonequilibrium stochastic
behaviour in small systems. Whilst experiments have shown
that fluctuation theorems are obeyed by single particles in
liquids5 and several other physical systems6–10, it has not been
shown if that is the case in strongly coupled plasmas. Plasmas
are said to be strongly coupled when interparticle potential
energies are large compared to kinetic energies. Charged
particles insuchplasmascanbehavecollectively like liquids11,12,
but with essential di�erences, such as long-range collisions13.
It remains unexplored whether, despite these di�erences, the
stochastic behaviour of strongly coupled plasmas will obey
fluctuation theorems. Here we demonstrate experimentally
that a strongly coupled dusty plasma obeys the fluctuation
theorem of Evans, Cohen, and Morriss (ECM)14, which was
developed for a simple liquid in a nonequilibrium steady state.
This fluctuation theorem describes the entropy production
arising from collisions in a steady laminar shear flow.

A dusty plasma15–17 is a four-component mixture of micro-
spheres, electrons, positive ions, and a rarefied neutral gas, which all
share a volume18. The microspheres, which are the heaviest of these
components, develop large charges19 so that they become strongly
coupled20. The lighter charged components of the dusty plasma
(electrons and positive ions) are weakly coupled. Dusty plasmas
have much in common with other strongly coupled plasmas, such
as ultracold neutral plasmas21, and warm dense matter22 as well.

The collection of microspheres can undergo a liquid-like flow
when external forces are applied by laser beams23–27. In this way, the
microspheres can be driven into a shear flow—that is, a flow with
a transverse gradient in the flow velocity. In the shear flow, entropy
production results from collisions between microspheres.

Many fluctuation theorems centre on the rate of entropy pro-
duction in nonequilibrium systems below the thermodynamic limit.
Fluctuation theorems (not to be confused with the similarly named
fluctuation–dissipation theorem) all spawned from the ECM fluc-
tuation theorem; this original fluctuation theorem was developed
especially for a steady-state laminar shear flow. In a shear flow,
entropy production is generated by viscous heating. This viscous
heating is always positive in the thermodynamic limit, but it can
fluctuate briefly to negative values for a subsystem within the fluid,
containing a small number of molecules. These fluctuations, with
negative heating and therefore negative entropy production, have
been described as violations of the second law of thermodynamics14.

The ECM fluctuation theorem compares these negative-entropy-
production fluctuations to the more common positive fluctuations.
In particular, the probabilities of these two kinds of fluctuations are
predicted to have a ratio obeying14,28

ln

[
p(στ=−C)
p(στ=C)

]
=−Cτ as τ→∞ (1)

We will later summarize equation (1), which is the historically
important ECM fluctuation theorem, as left-hand side equals right-
hand side (LHS= RHS), as τ→∞. In equation (1), στ is the
entropy production rate averaged over an observation time τ , and
p(στ =−C) is the probability that στ has a specified negative
value−C .

In addition to our main purpose of demonstrating that strongly
coupled plasmas can obey a fluctuation theorem, our experiment
serves also to reveal the robustness of the ECM fluctuation theorem.
We do this by showing that beyond the original intended system of
a simple liquid in a shear flow, ECM also works for a system with
additional complications. These complications, for a dusty plasma,
include long-range potentials and an open system for energy flow.
The long-range screened Coulomb potentials for the microspheres
are known to lead to distinctive behaviour such as a minimum in
viscosity with respect to temperature29. The open system character
of the collection of microspheres arises from flows of energy to and
from the microspheres. Laser heating provides an external energy
input, as does a powered electrode that sustains electric fields. These
fields, which are modified by the electrons and ions, drive an ion
flow that can give some of its energy to the microspheres. The
combination of these energy inputs is balanced by an energy loss
to the neutral gas due to friction. We will find that, despite all these
complications, ECM is so robust that it accurately describes the fluc-
tuations in entropy production in our collection of microspheres.

Our dusty plasma consisted of polymer microspheres suspended
in a weakly ionized argon gas. The approximately 104 microspheres
were electrically confined to a single two-dimensional layer within
the three-dimensional volume filled by the other dusty plasma
components. The microspheres, of 8.69 µm diameter, accumulated
a large negative charge Q=−15,000e, where e is the elementary
charge. Their mutual repulsion caused the microspheres to be
spaced with a Wigner–Seitz radius a=0.33mm. The microspheres
collectively had an irregular liquid-like arrangement, due a kinetic
temperature that was elevated using two laser beams24. In addition
to this laser heating, a separate pair of laser beams was used to drive
the collection of microspheres into a laminar shear flow.

The microsphere motion resulting from laser manipulation in
our experiment is shown in Fig. 1. Representative microsphere
trajectories in Fig. 1a show that the flow was straight and laminar,
and that individualmicrospheres not only participated in the overall
flow but also exhibited their own random thermal motion. The
hydrodynamic profiles in Fig. 1b,c confirm that the kinetic tem-
perature T is uniform, and the flow velocity profile is linear within
9.0<y<11.5mm, which is the central region that we analyse.

We measured the local entropy production rate associated
with viscous heating among the collection of microspheres. The
instantaneous rate14, σ(t) = −Pxy(t)γ /kBT , is calculated from
the positions and velocities of microspheres and the binary

Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA. *e-mail: chun-shang-wong@uiowa.edu

NATURE PHYSICS | VOL 14 | JANUARY 2018 | www.nature.com/naturephysics 21

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://dx.doi.org/10.1038/nphys4253
mailto:chun-shang-wong@uiowa.edu
www.nature.com/naturephysics


LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS4253

0

x

y

2 4 6 8
y (mm)

10 12

Sh
ea

r l
as

er
 b

ea
m

Su
bs

ys
te

m
 o

f
56

 m
ic

ro
sp

he
re

s

14 16

1

a b

c

0

−1

Fl
ow

 v
el

oc
ity

 u
x (

m
m

 s
−1

)
Ki

ne
tic

 te
m

pe
ra

tu
re

 (1
04  K

)

6 8 10 12
y (mm)

14 16

6 8 10 12
y (mm)

14 16

12

10

8

6

4

2

0

dux
dy = 0.58 s−1γ ≡

Sh
ea

r l
as

er
 b

ea
m

Figure 1 | Microsphere trajectories and hydrodynamic profiles in the dusty plasma experiment. Thousands of mutually repulsive charged microspheres
were electrically levitated as a single layer. We imaged the layer with a top-view video camera, and analysed images to measure the positions and velocities
of individual microspheres30. a, Tracks of individual microspheres in the camera’s field of view are shown over a duration of 0.3 s, revealing a combination
of random thermal motion and directed flow. The thermal and flow velocity were of the same order (1 mm s−1). The collective flow of the microspheres,
which was laminar, was driven by the radiation pressure force of oppositely directed shear laser beams (as shown). Simultaneously, heating was applied
separately24 over a much larger area by two other laser beams (not shown here) to sustain liquid-like conditions in the microsphere layer. We direct our
attention to a specific subsystem, shown as a rectangle containing N=56 microspheres. b, The flow pattern of the microspheres is a shear flow, with a
linear gradient in the central region. This gradient γ appears in the Navier–Stokes energy equation term µγ 2, where µ is the viscosity and γ =∂ux/∂y.
A non-zero value of γ gives rise to viscous heating, which corresponds to entropy production. We obtained the hydrodynamic flow velocity profile as an
average of the microsphere velocities. c, The hydrodynamic kinetic temperature profile is nearly uniform in the central region. This temperature was
obtained from the mean-square microsphere velocities after subtracting the local flow velocity.

microsphere–microsphere interaction forces. Other forces, whether
from an external source or from other components of the dusty
plasma, do not enter into the expression above and therefore do
not affect the entropy production that we measure, as explained in
the Supplementary Information. Here, Pxy(t) is the instantaneous
shear stress and γ is the shear rate (that is, the transverse gradient
in the flow velocity).

In our experiment, video microscopy and tracking of the
individual microspheres provided the necessary inputs to compute
the shear stress26, Pxy(t), and in turn, σ(t) in a shear flow. The
resulting time series σ(t), for a subsystem of N=56 microspheres,
is the basis of all our remaining analysis; a portion of this time series
is shown in Fig. 2a.

To assess whether our liquid-like strongly coupled plasma
obeys ECM, we need distributions of the time-averaged entropy
production rate στ . We prepared these distributions as histograms,
like Fig. 2b,c. This was done by averaging the σ(t) time series within
segments of duration τ , yielding στ . Then, histograms weremade by
counting the events when στ fell within a specified bin. Of particular
interest are the negative fluctuations of στ , which can be seen in the
shaded regions of Fig. 2b,c.

Counts in the experimentally obtained histograms, like those in
Fig. 2b,c, were used as the probabilities p in the LHS of the ECM
fluctuation theorem, equation (1). We first chose a value of τ and
selected two oppositely valued histogram bins, στ =±C . Then, we
calculated the ratio of the counts in the bins for −C and +C ,
allowing us to obtain the LHS using equation (1). The RHS was also

calculated from C and τ . Finally, we compare the LHS to the RHS of
equation (1) to test whether our strongly coupled plasma obeys the
ECM fluctuation theorem. These results are presented in Fig. 3a,b,
for a long τ and a short τ , respectively.

Our chief result is that the ECM fluctuation theorem is obeyed
by the strongly coupled component of our dusty plasma—the
microspheres. This is demonstrated experimentally in Fig. 3a, where
the LHS and RHS pairs of data points agree within error bars, for
equation (1). We note that this agreement did not require adjusting
any free parameter.

This agreement also demonstrates that, as a description of a shear
flow, ECM is not limited to its original scope of simple liquids. Our
experiment shows that ECM also accurately describes a shear flow
for one component of a more complicated system.

Another aspect of the ECM fluctuation theorem that we can
explore is its asymptotic behaviour. According to equation (1), the
LHS and RHSmust converge together for increasing τ . This gradual
tendency can be seen in our experimental data by comparing Fig. 3a
and b. In Fig. 3a, for a long τ , the LHS and RHS have converged
together, but in Fig. 3b, for a short τ , they have not converged.

The timescale for this convergence is a quantity that should be
useful, in general, for gaining an understanding of a physical system.
However, the fluctuation theorem itself is silent upon the matter of
this timescale. Moreover, the literature says little about methods of
measuring convergence time.

We have devised a prescription for precisely obtaining a
characteristic time for convergence, tc. In Fig. 4, we use a curveD(τ ),
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Figure 2 | Time series and histograms of entropy production rate. Using our particle-level experimental data, we obtain the rate of entropy production for
a subsystem of N=56 microspheres. We report both the instantaneous rate σ (t) and an average rate στ =

〈
−Pxy(t)γ /kBT

〉
τ

for various observation times
τ , where Pxy(t) is the shear stress and 〈. . .〉τ is a time average. a, Time series for the first 20% of the data set for the instantaneous entropy production rate.
Second law violations are seen when σ (t) fluctuates to negative values in the shaded region. Whilst σ (t) does fluctuate to these negative values, it is more
often positive, with a positive average value as required by the second law. b,c, Histograms of the time-averaged rate στ also exhibit negative fluctuations,
but less so for a long observation time τ (b) than for a short τ (c). Such histograms are used as the inputs for the LHS of equation (1).
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Figure 3 | Demonstration that a strongly coupled plasma obeys the ECM fluctuation theorem. We compare the two dimensionless terms of equation (1),
the left-hand side (LHS, triangles) and right-hand side (RHS, circles), by examining a pair of data points for a given value of C. Most pairs of data points
agree within error bars for a long τ (in a), but not for a short τ (in b); this result demonstrates that our data obey the ECM fluctuation theorem, including
the asymptotic property of equation (1) that LHS=RHS only as τ→∞. The LHS data points in a,b were obtained using histograms of στ , Fig. 2b,c. Error
bars, which represent one-standard-deviation uncertainties, were found from counting statistics for these histograms. Straight lines are drawn through the
data points to guide the eye.
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Figure 4 | Convergence of the ECM fluctuation theorem. Convergence as
τ→∞ is an essential aspect of the ECM fluctuation theorem. To quantify
the timescale for this convergence, we begin by obtaining the discrepancy
D(τ ) between the slopes of two curves, LHS versus C and RHS versus C, at
a specified τ . The uncertainty in computing the slopes for the LHS curves
yielded the one-standard-deviation error bars of D. We find that
convergence occurs with an exponential diminishment of D for increasing τ .
A second fit of the data shown here to an exponential yields a convergence
time tc=0.037 s.

whereD(τ ) is the difference in the slope of two curves: LHS versusC
and RHS versus C , at a specified value of τ . For our experiment, the
curve D(τ ) decays exponentially, allowing us to define its e-folding
time as tc.

For our experiment, we find a convergence time tc = 0.037 s.
This value describes the time required for stochastic effects to
begin accumulating in our shear flow. For our experimental con-
ditions, tc is comparable to the inverse of the mean entropy pro-
duction rate of 0.053 s in Fig. 2, and tc is also comparable to
the inverse Einstein frequency (see Supplementary Information)
Ω−1E =0.024 s.

Data availability. The data that support the plots within this paper
and other findings of this study are available from the corresponding
author upon reasonable request.

Received 30 December 2016; accepted 10 August 2017;
published online 11 September 2017

References
1. Evans, D. J. & Searles, D. J. The fluctuation theorem. Adv. Phys. 51,

1529–1585 (2002).
2. Ritort, F. Nonequilibrium fluctuations in small systems: from physics to

biology. Adv. Chem. Phys. 137, 31–123 (2008).
3. Sevick, E. M., Prabhakar, R., Williams, S. R. & Searles, D. J. Fluctuation

theorems. Annu. Rev. Phys. Chem. 59, 603–633 (2008).
4. Jarzynski, C. Equalities and inequalities: irreversibility and the second law of

thermodynamics at the nanoscale. Annu. Rev. Condens. Matter Phys. 2,
329–351 (2011).

5. Wang, G. M., Sevick, E. M., Mittag, E., Searles, D. J. & Evans, D. J. Experimental
demonstration of violations of the second law of thermodynamics for small
systems and short time scales. Phys. Rev. Lett. 89, 050601 (2002).

6. Collin, D. et al . Verification of the Crooks fluctuation theorem and recovery of
RNA folding free energies. Nature 437, 231–234 (2005).

7. Garnier, N. & Ciliberto, S. Nonequilibrium fluctuations in a resistor. Phys. Rev.
E 71, 060101 (2005).

8. Alemany, A., Mossa, A., Junier, I. & Ritort, F. Experimental free-energy
measurements of kinetic molecular states using fluctuation theorems.
Nat. Phys. 8, 688–694 (2012).

9. Koski, J. V. et al . Distribution of entropy production in a single-electron box.
Nat. Phys. 9, 644–648 (2013).

10. Ciliberto, S., Joubaud, S. & Petrosyan, A. Fluctuations in out-of-equilibrium
systems: from theory to experiment. J. Stat. Mech. 2010, P12003 (2010).

11. Ichimaru, S. Strongly coupled plasmas: high-density classical plasmas and
degenerate electron liquids. Rev. Mod. Phys. 54, 1017–1059 (1982).

12. Morfill, G. E. & Ivlev, A. V. Complex plasmas: an interdisciplinary research
field. Rev. Mod. Phys. 81, 1353–1404 (2009).

13. Hazeltine, R. D. &Waelbroeck, F. L. The Framework of Plasma Physics Ch. 1
(Westview Press, 2004).

14. Evans, D. J., Cohen, E. G. D. & Morriss, G. P. Probability of second law
violations in shearing steady states. Phys. Rev. Lett. 71, 2401–2404 (1993).

15. Merlino, R. L. & Goree, J. A. Dusty plasmas in the laboratory, industry, and
space. Phys. Today 57, 32–38 (July, 2004).

16. Fortov, V. E., Ivlev, A. V., Khrapak, S. A., Khrapak, A. G. & Morfill, G. E.
Complex (dusty) plasmas: current status, open issues, perspectives. Phys. Rep.
421, 1–103 (2005).

17. Bonitz, M., Henning, C. & Block, D. Complex plasmas: a laboratory for strong
correlations. Rep. Prog. Phys. 73, 066501 (2010).

18. Feng, Y., Goree, J., Liu, B. & Cohen, E. G. D. Green–Kubo relation for viscosity
tested using experimental data for a two-dimensional dusty plasma.
Phys. Rev. E 84, 046412 (2011).

19. Whipple, E. C. Potentials of surfaces in space. Rep. Prog. Phys. 44,
1197–1250 (1981).

20. Pramanik, J., Prasad, G., Sen, A. & Kaw, P. K. Experimental observations of
transverse shear waves in strongly coupled dusty plasmas. Phys. Rev. Lett. 88,
175001 (2002).

21. Killian, T. C. et al . Creation of an ultracold neutral plasma. Phys. Rev. Lett. 83,
4773–4779 (1999).

22. Koenig, M. et al . Progress in the study of warm dense matter. Plasma Phys.
Control. Fusion 47, B441–B449 (2005).

23. Nosenko, V., Goree, J. & Piel, A. Laser method of heating monolayer dusty
plasmas. Phys. Plasmas 13, 032106 (2006).

24. Haralson, Z. & Goree, J. Laser heating of 2-D dusty plasmas using a random arc
pattern. IEEE Trans. Plasma Sci. 44, 549–552 (2016).

25. Io, C.-W. & Lin, I. Steady-shear-enhanced microdiffusion with multiple time
scales of confined, mesoscopic, two-dimensional dusty-plasma liquids.
Phys. Rev. E 80, 036401 (2009).

26. Hartmann, P., Sándor, M. C., Kovács, A. & Donkó, Z. Static and dynamic
shear viscosity of a single-layer complex plasma. Phys. Rev. E 84,
016404 (2011).

27. Feng, Y., Goree, J. & Liu, B. Observation of temperature peaks due to strong
viscous heating in a dusty plasma flow. Phys. Rev. Lett. 109, 185002 (2012).

28. Gallavotti, G. & Cohen, E. G. D. Dynamical ensembles in nonequilibrium
statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995).

29. Sanbonmatsu, K. Y. & Murillo, M. S. Shear viscosity of strongly coupled
yukawa systems on finite length scales. Phys. Rev. Lett. 86, 1215–1218 (2001).

30. Feng, Y., Goree, J. & Liu, B. Accurate particle position measurement from
images. Rev. Sci. Instrum. 78, 053704 (2007).

Acknowledgements
We thank R. Belousov and E. G. D. Cohen for helpful discussions. This work was
supported by the US National Science Foundation, the US Department of Energy,
and NASA.

Author contributions
C.-S.W. and J.G. conceived and designed the experiment; Z.H. performed the
experiment; C.-S.W. and J.G. analysed the data; B.L. performed the numerical
simulations; C.-.S.W. and J.G. wrote the paper.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints. Publisher’s note:
Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations. Correspondence and requests for materials should be
addressed to C.-S.W.

Competing financial interests
The authors declare no competing financial interests.

24

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE PHYSICS | VOL 14 | JANUARY 2018 | www.nature.com/naturephysics

http://dx.doi.org/10.1038/nphys4253
http://dx.doi.org/10.1038/nphys4253
http://www.nature.com/reprints
www.nature.com/naturephysics

	Strongly coupled plasmas obey the fluctuation theorem for entropy production
	Figure 1 Microsphere trajectories and hydrodynamic profiles in the dusty plasma experiment.
	Figure 2 Time series and histograms of entropy production rate.
	Figure 3 Demonstration that a strongly coupled plasma obeys the ECM fluctuation theorem.
	Figure 4 Convergence of the ECM fluctuation theorem.
	References
	Acknowledgements
	Author contributions
	Additional information
	Competing financial interests

