Abstract
Skyrmions are coreless vortex-like excitations emerging in diverse condensed-matter systems, and real-time observation of their dynamics is still challenging. Here we report the first direct optical observation of the spontaneous formation of half-skyrmions. In a thin film of a chiral liquid crystal, depending on experimental conditions including film thickness, they form a hexagonal lattice whose lattice constant is a few hundred nanometres, or appear as isolated entities with topological defects compensating their charge. These half-skyrmions exhibit intriguing dynamical behaviour driven by thermal fluctuations. Numerical calculations of real-space images successfully corroborate the experimental observations despite the challenge because of the characteristic scale of the structures close to the optical resolution limit. A thin film of a chiral liquid crystal thus offers an intriguing platform that facilitates a direct investigation of the dynamics of topological excitations such as half-skyrmions and their manipulation with optical techniques.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Diffusionless transformation of soft cubic superstructure from amorphous to simple cubic and body-centered cubic phases
Nature Communications Open Access 09 June 2021
-
Particle-size dependent structural transformation of skyrmion lattice
Nature Communications Open Access 11 November 2020
-
Relaxation dynamics in bio-colloidal cholesteric liquid crystals confined to cylindrical geometry
Nature Communications Open Access 15 September 2020
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Rajaraman, R. Solitons and Instantons. An Introduction to Solitons and Instantons in Quantum Field Theory (North Holland, 1982).
Manton, N. & Sutcliffe, P. Topological Solitons (Cambridge Univ. Press, 2004).
Skyrme, T. A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962).
Sondhi, S. L., Karlhede, A., Kivelson, S. A. & Rezayi, E. H. Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies. Phys. Rev. B 47, 16419–16426 (1993).
Barrett, S. E., Dabbagh, G., Pfeiffer, L. N., West, K. W. & Tycko, R. Optically pumped NMR evidence for finite-size skyrmions in GaAs quantum wells near Landau level filling ν = 1. Phys. Rev. Lett. 74, 5112–5115 (1995).
Schmeller, A., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Evidence for skyrmions and single spin flips in the integer quantized Hall effect. Phys. Rev. Lett. 75, 4290–4293 (1995).
Leanhardt, A. E., Shin, Y., Kielpinski, D., Pritchard, D. E. & Ketterle, W. Coreless vortex formation in a spinor Bose–Einstein condensate. Phys. Rev. Lett. 90, 140403 (2003).
Leslie, L. S., Hansen, A., Wright, K. C., Deutsch, B. M. & Bigelow, N. P. Creation and detection of skyrmions in a Bose–Einstein condensate. Phys. Rev. Lett. 103, 250401 (2009).
Mermin, N. D. & Ho, T.-L. Circulation and angular momentum in the A phase of superfluid Helium-3. Phys. Rev. Lett. 36, 594–597 (1976).
Anderson, P. W. & Toulouse, G. Phase slippage without vortex cores: vortex textures in superfluid 3He. Phys. Rev. Lett. 38, 508–511 (1977).
Ruutu, V. M. H. et al. Critical velocity of vortex nucleation in rotating superfluid 3He- A. Phys. Rev. Lett. 79, 5058–5061 (1997).
Rößler, U., Bogdanov, A. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).
Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).
Yu, X. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).
Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).
Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotech. 11, 449–454 (2016).
Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotech. 8, 152–156 (2013).
Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013).
Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).
Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).
Braun, H.-B. Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons. Adv. Phys. 61, 1–116 (2012).
de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals 2 edn (International Series of Monographs on Physics, Oxford Univ. Press, 1995).
Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).
Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).
Xu, X.-Q. & Han, J. H. Emergence of chiral magnetism in spinor Bose–Einstein condensates with Rashba coupling. Phys. Rev. Lett. 108, 185301 (2012).
Sinha, S., Nath, R. & Santos, L. Trapped two-dimensional condensates with synthetic spin–orbit coupling. Phys. Rev. Lett. 107, 270401 (2011).
Hu, H., Ramachandhran, B., Pu, H. & Liu, X.-J. Spin–orbit coupled weakly interacting Bose–Einstein condensates in harmonic traps. Phys. Rev. Lett. 108, 010402 (2012).
Bogdanov, A. New localized solutions of the nonlinear field equations. JETP Lett. 62, 247–251 (1995).
Wright, D. C. & Mermin, N. D. Crystalline liquids: the blue phases. Rev. Mod. Phys. 61, 385–432 (1989).
Bogdanov, A. & Shestakov, A. Inhomogeneous two-dimensional structures in liquid crystals. J. Exp. Theor. Phys. 86, 911–923 (1998).
Bogdanov, A. N., Rößler, U. K. & Shestakov, A. A. Skyrmions in nematic liquid crystals. Phys. Rev. E 67, 016602 (2003).
Leonov, A. O., Dragunov, I. E., Rößler, U. K. & Bogdanov, A. N. Theory of skyrmion states in liquid crystals. Phys. Rev. E 90, 042502 (2014).
Kawachi, M., Kogure, O. & Kato, Y. Bubble domain texture of a liquid crystal. Jpn. J. Appl. Phys. 13, 1457–1458 (1974).
Haas, W. E. L. & Adams, J. E. Electrically variable diffraction in spherulitic liquid crystals. Appl. Phys. Lett. 25, 263–264 (1974).
Ackerman, P. J., Trivedi, R. P., Senyuk, B., van de Lagemaat, J. & Smalyukh, I. I. Two-dimensional skyrmions and other solitonic structures in confinement-frustrated chiral nematics. Phys. Rev. E 90, 012505 (2014).
Smalyukh, I. I., Lansac, Y., Clark, N. A. & Trivedi, R. P. Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids. Nat. Mater. 9, 139–145 (2010).
Ackerman, P. J., Qi, Z. & Smalyukh, I. I. Optical generation of crystalline, quasicrystalline, and arbitrary arrays of torons in confined cholesteric liquid crystals for patterning of optical vortices in laser beams. Phys. Rev. E 86, 021703 (2012).
Ackerman, P. J., van de Lagemaat, J. & Smalyukh, I. I. Self-assembly and electrostriction of arrays and chains of hopfion particles in chiral liquid crystals. Nat. Commun. 6, 6012 (2015).
Posnjak, G., Čopar, S. & Muševič, I. Points, skyrmions and torons in chiral nematic droplets. Sci. Rep. 6, 26361 (2016).
Guo, Y. et al. Cholesteric liquid crystals in rectangular microchannels: skyrmions and stripes. Soft Matter 12, 6312–6320 (2016).
Fukuda, J. & Žumer, S. Quasi-two-dimensional skyrmion lattices in a chiral nematic liquid crystal. Nat. Commun. 2, 246 (2011).
Mizushima, T., Kobayashi, N. & Machida, K. Coreless and singular vortex lattices in rotating spinor Bose–Einstein condensates. Phys. Rev. A 70, 043613 (2004).
Su, S.-W., Liu, I.-K., Tsai, Y.-C., Liu, W. M. & Gou, S.-C. Crystallized half-skyrmions and inverted half-skyrmions in the condensation of spin-1 Bose gases with spin–orbit coupling. Phys. Rev. A 86, 023601 (2012).
Pappas, C. et al. Chiral paramagnetic skyrmion-like phase in MnSi. Phys. Rev. Lett. 102, 197202 (2009).
Blümel, T. & Stegemeyer, H. On the origin of Grandjean–Cano lines in liquid-crystalline blue phases. Liq. Cryst. 3, 195–201 (1988).
Higashiguchi, K., Yasui, K. & Kikuchi, H. Direct observation of polymer-stabilized blue phase I structure with confocal laser scanning microscope. J. Am. Chem. Soc. 130, 6326–6327 (2008).
Fukuda, J. & Žumer, S. Confinement effect on the interaction between colloidal particles in a nematic liquid crystal: an analytical study. Phys. Rev. E 79, 041703 (2009).
Pettey, D., Lubensky, T. C. & Link, D. R. Topological inclusions in 2D smectic C films. Liq. Cryst. 25, 579–587 (1998).
Oswald, P. & Pieranski, P. Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (CRC press, 2005).
Rosch, A. Magnetic skyrmions: particles or waves. Nat. Mater. 15, 1231–1232 (2016).
Yu, X. et al. Skyrmion flow near room temperature in an ultralow current density. Nat. Commun. 3, 988 (2012).
Ikeda, T. & Tsutsumi, O. Optical switching and image storage by means of azobenzene liquid-crystal films. Science 268, 1873–1875 (1995).
Nye, J. & Berry, M. Dislocations in wave trains. Proc. R. Soc. Lond. A 336, 165–190 (1974).
Porenta, T., Ravnik, M. & Žumer, S. Complex field-stabilised nematic defect structures in Laguerre–Gaussian optical tweezers. Soft Matter 8, 1865–1870 (2012).
Fukuda, J. & Žumer, S. Cholesteric blue phases: effect of strong confinement. Liq. Cryst. 37, 875–882 (2010).
Fukuda, J. & Žumer, S. Field-induced dynamics and structures in a cholesteric-blue-phase cell. Phys. Rev. E 87, 042506 (2013).
Acknowledgements
A.N. and U.O. acknowledge partial support from NAS of Ukraine (grant 1.4B/186) and Ukrainian–Slovenian bilateral project (grants M/13-2013 and M/100-2014). J.F. thanks Slovenian Research Agency (ARRS research programme P1-0099 and project J1-2335) and the Centre of Excellence NAMASTE for generous financial support for his stay in University of Ljubljana, during which the important part of his work was carried out. J.F. is also supported by JSPS Grant-in-Aid (KAKENHI) for Scientific Research (Grant Numbers 25400437 and JP17H02947), the Cooperative Research Program of ‘Network Joint Research Centre for Materials and Devices,’ and the Supercomputer Center, the Institute for Solid State Physics, the University of Tokyo. I.M. and S.Ž. acknowledge support of the Slovenian Research Agency (ARRS) programme P1-0099 and grants J1-6723 and J1-7300. J.F. benefited greatly from valuable discussions with H. Kikuchi, Y. Okumura, H. Higuchi, H. Yoshida, H. Orihara, T. Ohzono and J. Kishine, and technical advice on numerical calculations by T. Miura.
Author information
Authors and Affiliations
Contributions
A.N. and U.O. designed and performed the experiments. J.F. developed a framework for the calculation of microscope images, and carried out the numerical calculations. I.M. initiated the experimental work and supervised the experiments. S.Ž. supervised the theoretical work. J.F. wrote the manuscript with the input from all the other authors. All the authors discussed and analysed the results and contributed to the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 1542 kb)
Supplementary movie
Supplementary movie 1 (MP4 1405 kb)
Supplementary movie
Supplementary movie 2 (MP4 2411 kb)
Supplementary movie
Supplementary movie 3 (MOV 2277 kb)
Supplementary movie
Supplementary movie 4 (MOV 2564 kb)
Supplementary movie
Supplementary movie 5 (MP4 351 kb)
Rights and permissions
About this article
Cite this article
Nych, A., Fukuda, Ji., Ognysta, U. et al. Spontaneous formation and dynamics of half-skyrmions in a chiral liquid-crystal film. Nature Phys 13, 1215–1220 (2017). https://doi.org/10.1038/nphys4245
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys4245
This article is cited by
-
Violation of Ericksen Inequalities in Lyotropic Chromonic Liquid Crystals
Journal of Elasticity (2022)
-
Diffusionless transformation of soft cubic superstructure from amorphous to simple cubic and body-centered cubic phases
Nature Communications (2021)
-
Preliminary design of a three-element zoom system based on a variable-focal-power lens
Optical Review (2021)
-
Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction
Nature Materials (2020)
-
Particle-size dependent structural transformation of skyrmion lattice
Nature Communications (2020)