Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Four-body ring-exchange interactions and anyonic statistics within a minimal toric-code Hamiltonian

Abstract

Ring exchange is an elementary interaction for modelling unconventional topological matter. Here, we report the observation of four-body ring-exchange interactions and the topological properties of anyonic excitations within an ultracold atom system. A minimum toric-code Hamiltonian, in which the ring exchange is the dominant term, was implemented in disconnected four-spin plaquette arrays formed by two orthogonal superlattices. The ring-exchange interactions were resolved from the dynamical evolutions of the spin orders in each plaquette, matching well with the predicted energy gaps between two anyonic excitations of the spin system. A braiding operation was applied to the spins in the plaquettes and an induced phase 1.00(3)π in the four-spin state was observed, confirming 1/2 mutual statistics. This work offers new prospects for the quantum simulation of topological phases by engineering many-body interactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental scheme and the ring-exchange process in disconnected four-site plaquettes.
Figure 2: Observation of four-body ring-exchange interactions.
Figure 3: Frequencies of the spin oscillations.
Figure 4: Coherent control of ring-exchange dynamics and braiding anyons in a minimal toric-code model.

References

  1. 1

    Nielsen, M. & Chuang, I. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    Google Scholar 

  2. 2

    Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3

    Knill, E. Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005).

    ADS  Article  Google Scholar 

  4. 4

    Kitaev, A. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    ADS  MathSciNet  Article  Google Scholar 

  5. 5

    Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6

    Han, Y.-J., Raussendorf, R. & Duan, L.-M. Scheme for demonstration of fractional statistics of anyons in an exactly solvable model. Phys. Rev. Lett. 98, 150404 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  7. 7

    Müller, M., Hammerer, K., Zhou, Y. L., Roos, C. F. & Zoller, P. Simulating open quantum systems: from many-body interactions to stabilizer pumping. New J. Phys. 13, 085007 (2011).

    ADS  Article  Google Scholar 

  8. 8

    Marcos, D. et al. Two-dimensional lattice gauge theories with superconducting quantum circuits. Ann. Phys. 351, 634–654 (2014).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9

    Paredes, B. & Bloch, I. Minimum instances of topological matter in an optical plaquette. Phys. Rev. A 77, 023603 (2008).

    ADS  Article  Google Scholar 

  10. 10

    Büchler, H. P., Hermele, M., Huber, S. D., Fisher, M. P. A. & Zoller, P. Atomic quantum simulator for lattice gauge theories and ring exchange models. Phys. Rev. Lett. 95, 040402 (2005).

    ADS  Article  Google Scholar 

  11. 11

    Aguado, M., Brennen, G. K., Verstraete, F. & Cirac, J. I. Creation, manipulation, and detection of Abelian and non-Abelian anyons in optical lattices. Phys. Rev. Lett. 101, 260501 (2008).

    ADS  Article  Google Scholar 

  12. 12

    Weimer, H., Müller, M., Lesanovsky, I., Zoller, P. & Büchler, H. P. A Rydberg quantum simulator. Nat. Phys. 6, 382–388 (2010).

    Article  Google Scholar 

  13. 13

    Wiese, U.-J. Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories. Ann. Phys. 525, 777–796 (2013).

    MathSciNet  Article  Google Scholar 

  14. 14

    Tagliacozzo, L., Celi, A., Orland, P., Mitchell, M. W. & Lewenstein, M. Simulation of non-Abelian gauge theories with optical lattices. Nat. Commun. 4, 3615 (2013).

    Article  Google Scholar 

  15. 15

    Banerjee, D. et al. Atomic quantum simulation of U(N) and SU(N) non-Abelian lattice gauge theories. Phys. Rev. Lett. 110, 125303 (2013).

    ADS  Article  Google Scholar 

  16. 16

    Zohar, E., Cirac, J. I. & Reznik, B. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep. Prog. Phys. 79, 014401 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  17. 17

    Lu, C.-Y. et al. Demonstrating anyonic fractional statistics with a six-qubit quantum simulator. Phys. Rev. Lett. 102, 030502 (2009).

    ADS  Article  Google Scholar 

  18. 18

    Pachos, J. K. et al. Revealing anyonic features in a toric code quantum simulation. New J. Phys. 11, 083010 (2009).

    ADS  Article  Google Scholar 

  19. 19

    Feng, G., Long, G. & Laflamme, R. Experimental simulation of anyonic fractional statistics with an nmr quantum-information processor. Phys. Rev. A 88, 022305 (2013).

    ADS  Article  Google Scholar 

  20. 20

    Park, A. J., McKay, E., Lu, D. & Laflamme, R. Simulation of anyonic statistics and its topological path independence using a seven-qubit quantum simulator. New J. Phys. 18, 043043 (2016).

    Article  Google Scholar 

  21. 21

    Barreiro, J. T. et al. An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011).

    ADS  Article  Google Scholar 

  22. 22

    Jiang, L. et al. Anyonic interferometry and protected memories in atomic spin lattices. Nat. Phys. 4, 482–488 (2008).

    Article  Google Scholar 

  23. 23

    Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

    ADS  Article  Google Scholar 

  24. 24

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS  Article  Google Scholar 

  25. 25

    Simon, J. et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011).

    ADS  Article  Google Scholar 

  26. 26

    Fukuhara, T. et al. Quantum dynamics of a mobile spin impurity. Nat. Phys. 9, 235–241 (2013).

    Article  Google Scholar 

  27. 27

    Nascimbène, S. et al. Experimental realization of plaquette resonating valence-bond states with ultracold atoms in optical superlattices. Phys. Rev. Lett. 108, 205301 (2012).

    ADS  Article  Google Scholar 

  28. 28

    Aidelsburger, M. et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013).

    ADS  Article  Google Scholar 

  29. 29

    Miyake, H., Siviloglou, G. A., Kennedy, C. J., Burton, W. C. & Ketterle, W. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013).

    ADS  Article  Google Scholar 

  30. 30

    Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    ADS  Article  Google Scholar 

  31. 31

    Fukuhara, T. et al. Spatially resolved detection of a spin-entanglement wave in a Bose–Hubbard chain. Phys. Rev. Lett. 115, 035302 (2015).

    ADS  Article  Google Scholar 

  32. 32

    Islam, R. et al. Measuring entanglement entropy in a quantum many-body system. Nature 528, 77–83 (2015).

    ADS  Article  Google Scholar 

  33. 33

    Dai, H.-N. et al. Generation and detection of atomic spin entanglement in optical lattices. Nat. Phys. 12, 783–787 (2016).

    Article  Google Scholar 

  34. 34

    Trotzky, S. et al. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science 319, 295–299 (2008).

    ADS  Article  Google Scholar 

  35. 35

    Brown, R. C. et al. Two-dimensional superexchange-mediated magnetization dynamics in an optical lattice. Science 348, 540–544 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  36. 36

    Dutta, O. et al. Non-standard Hubbard models in optical lattices: a review. Rep. Prog. Phys. 78, 066001 (2015).

    ADS  Article  Google Scholar 

  37. 37

    Bakr, W. S. et al. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010).

    ADS  Article  Google Scholar 

  38. 38

    Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).

    ADS  Article  Google Scholar 

  39. 39

    Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    ADS  Article  Google Scholar 

  40. 40

    Eckardt, A., Weiss, C. & Holthaus, M. Superfluid–insulator transition in a periodically driven optical lattice. Phys. Rev. Lett. 95, 260404 (2005).

    ADS  Article  Google Scholar 

  41. 41

    Kitagawa, T., Berg, E., Rudner, M. & Demler, E. Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010).

    ADS  Article  Google Scholar 

  42. 42

    Trebst, S., Schollwöck, U., Troyer, M. & Zoller, P. d-wave resonating valence bond states of fermionic atoms in optical lattices. Phys. Rev. Lett. 96, 250402 (2006).

    ADS  Article  Google Scholar 

  43. 43

    Wen, X.-G. Quantum Field Theory of Many-Body Systems (Oxford Univ. Press, 2004).

    Google Scholar 

  44. 44

    Altman, E. & Auerbach, A. Plaquette Boson–Fermion model of cuprates. Phys. Rev. B 65, 104508 (2002).

    ADS  Article  Google Scholar 

  45. 45

    Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  46. 46

    Duan, L.-M., Demler, E. & Lukin, M. D. Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003).

    ADS  Article  Google Scholar 

  47. 47

    Zhang, C., Scarola, V. W., Tewari, S. & Das Sarma, S. Anyonic braiding in optical lattices. Proc. Natl Acad. Sci. USA 104, 18415–18420 (2007).

    ADS  Article  Google Scholar 

  48. 48

    Dusuel, S., Schmidt, K. P. & Vidal, J. Creation and manipulation of anyons in the Kitaev model. Phys. Rev. Lett. 100, 177204 (2008).

    ADS  Article  Google Scholar 

  49. 49

    Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

We thank A. J. Leggett, P. Zoller and B. Zhao for helpful discussions. This work was supported by the National Key R&D Program of China (2016YFA0301600), National Natural Science Foundation of China (91421305, 11521063), and the Chinese Academy of Sciences.

Author information

Affiliations

Authors

Contributions

Y.-A.C., Z.-S.Y. and J.-W.P. initiated and designed this research project. H.-N.D., B.Y., A.R., X.-F.X. and Z.-S.Y. set up the experiment. H.-N.D., B.Y., A.R. and H.S. performed the measurement and analysed the data. All authors contributed to manuscript preparation. Z.-S.Y. and J.-W.P. supervised the whole project.

Corresponding authors

Correspondence to Zhen-Sheng Yuan or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 577 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dai, HN., Yang, B., Reingruber, A. et al. Four-body ring-exchange interactions and anyonic statistics within a minimal toric-code Hamiltonian. Nature Phys 13, 1195–1200 (2017). https://doi.org/10.1038/nphys4243

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing