Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecules cooled below the Doppler limit

Abstract

Magneto-optical trapping and sub-Doppler cooling have been essential to most experiments with quantum degenerate gases, optical lattices, atomic fountains and many other applications. A broad set of new applications await ultracold molecules1, and the extension of laser cooling to molecules has begun2,3,4,5,6. A magneto-optical trap (MOT) has been demonstrated for a single molecular species, SrF7,8,9, but the sub-Doppler temperatures required for many applications have not yet been reached. Here we demonstrate a MOT of a second species, CaF, and we show how to cool these molecules to 50 μK, well below the Doppler limit, using a three-dimensional optical molasses. These ultracold molecules could be loaded into optical tweezers to trap arbitrary arrays10 for quantum simulation11, launched into a molecular fountain12,13 for testing fundamental physics14,15,16,17,18, and used to study collisions and chemistry19 between atoms and molecules at ultracold temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the experiment.
Figure 2: Characterization of the MOT.
Figure 3: Cooling the MOT by ramping down the intensity.
Figure 4: Sub-Doppler cooling.

Similar content being viewed by others

References

  1. Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).

    Article  ADS  Google Scholar 

  2. Shuman, E. S., Barry, J. F. & DeMille, D. Laser cooling of a diatomic molecule. Nature 467, 820–823 (2010).

    Article  ADS  Google Scholar 

  3. Hummon, M. T. et al. 2D magneto-optical trapping of diatomic molecules. Phys. Rev. Lett. 110, 143001 (2013).

    Article  ADS  Google Scholar 

  4. Zhelyazkova, V. et al. Laser cooling and slowing of CaF molecules. Phys. Rev. A 89, 053416 (2014).

    Article  ADS  Google Scholar 

  5. Hemmerling, B. et al. Laser slowing of CaF molecules to near the capture velocity of a molecular MOT. J. Phys. B 49, 174001 (2016).

    Article  ADS  Google Scholar 

  6. Kozyryev, I. et al. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 118, 173201 (2017).

    Article  ADS  Google Scholar 

  7. Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).

    Article  ADS  Google Scholar 

  8. McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Improved magneto-optical trapping of a diatomic molecule. New J. Phys. 17, 035014 (2015).

    Article  ADS  Google Scholar 

  9. Norrgard, E. B., McCarron, D. J., Steinecker, M. H., Tarbutt, M. R. & DeMille, D. Submillikelvin dipolar molecules in a radio-frequency magneto-optical trap. Phys. Rev. Lett. 116, 063004 (2016).

    Article  ADS  Google Scholar 

  10. Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary 2d atomic arrays. Science 354, 1021–1023 (2016).

    Article  ADS  Google Scholar 

  11. Micheli, A., Brennen, G. K. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341–347 (2006).

    Article  Google Scholar 

  12. Tarbutt, M. R., Sauer, B. E., Hudson, J. J. & Hinds, E. A. Design for a fountain of YbF molecules to measure the electron’s electric dipole moment. New J. Phys. 15, 053034 (2013).

    Article  ADS  Google Scholar 

  13. Cheng, C. et al. Molecular fountain. Phys. Rev. Lett. 117, 253201 (2016).

    Article  ADS  Google Scholar 

  14. Hudson, J. J. et al. Improved measurement of the shape of the electron. Nature 473, 493–496 (2011).

    Article  ADS  Google Scholar 

  15. Baron, J. et al. Order of magnitude smaller limit on the electric dipole moment of the electron. Science 343, 269–272 (2014).

    Article  ADS  Google Scholar 

  16. Kajita, M. Variance measurement of mp/me using cold molecules. Can. J. Phys. 87, 743–748 (2009).

    Article  ADS  Google Scholar 

  17. Hunter, L. R., Peck, S. K., Greenspon, A. S., Alam, S. S. & DeMille, D. Prospects for laser cooling TlF. Phys. Rev. A 85, 012511 (2012).

    Article  ADS  Google Scholar 

  18. Cahn, S. B. et al. Zeeman-tuned rotational-level crossing spectroscopy in a diatomic free radical. Phys. Rev. Lett. 112, 163002 (2014).

    Article  ADS  Google Scholar 

  19. Krems, R. V. Cold controlled chemistry. Phys. Chem. Chem. Phys. 10, 4079–4092 (2008).

    Article  Google Scholar 

  20. Steinecker, M. H., McCarron, D. J., Zhu, Y. & DeMille, D. Improved radio-frequency magneto-optical trap of SrF molecules. Chem. Phys. Chem. 17, 3664–3669 (2016).

    Article  Google Scholar 

  21. Tarbutt, M. R. & Steimle, T. C. Modeling magneto-optical trapping of CaF molecules. Phys. Rev. A 92, 053401 (2015).

    Article  ADS  Google Scholar 

  22. Devlin, J. A. & Tarbutt, M. R. Three-dimensional Doppler, polarization-gradient, and magneto-optical forces for atoms and molecules with dark states. New J. Phys. 18, 123017 (2016).

    Article  ADS  Google Scholar 

  23. Dalibard, J. & Cohen-Tannoudji, C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. J. Opt. Soc. Am. B 6, 2023–2045 (1989).

    Article  ADS  Google Scholar 

  24. Ungar, P. J., Weiss, D. S., Riis, E. & Chu, S. Optical molasses and multilevel atoms: theory. J. Opt. Soc. Am. B 6, 2058–2071 (1989).

    Article  ADS  Google Scholar 

  25. Boiron, D., Triché, C., Meacher, D. R., Verkerk, P. & Grynberg, G. Three-dimensional cooling of cesium atoms in four-beam gray optical molasses. Phys. Rev. A 52, R3425–R3428 (1995).

    Article  ADS  Google Scholar 

  26. Fernandes, D. R. et al. Sub-Doppler laser cooling of fermionic 40K atoms in three-dimensional gray optical molasses. Europhys. Lett. 100, 63001 (2012).

    Article  ADS  Google Scholar 

  27. Prehn, A., Ibrügger, M., Glöckner, R., Rempe, G. & Zeppenfeld, M. Optoelectrical cooling of polar molecules to submillikelvin temperatures. Phys. Rev. Lett. 116, 063005 (2016).

    Article  ADS  Google Scholar 

  28. André, A. et al. A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators. Nat. Phys. 2, 636–642 (2006).

    Article  Google Scholar 

  29. Lim, J., Frye, M. D., Hutson, J. M. & Tarbutt, M. R. Modeling sympathetic cooling of molecules by ultracold atoms. Phys. Rev. A 92, 053419 (2015).

    Article  ADS  Google Scholar 

  30. Fitch, N. J. & Tarbutt, M. R. Principles and design of a Zeeman-Sisyphus decelerator for molecular beams. Chem. Phys. Chem. 17, 3609–3623 (2016).

    Article  Google Scholar 

  31. Wall, T. E. et al. Lifetime of the A(v′ = 0) state and Franck–Condon factor of the AX(0 − 0) transition of CaF measured by the saturation of laser-induced fluorescence. Phys. Rev. A 78, 062509 (2008).

    Article  ADS  Google Scholar 

  32. Dagdigian, P. J., Cruse, H. W. & Zare, R. N. Radiative lifetimes of the alkaline earth monohalides. J. Chem. Phys. 60, 2330–2339 (1974).

    Article  ADS  Google Scholar 

  33. Stuhl, B. K., Sawyer, B. C., Wang, D. & Ye, J. Magneto-optical trap for polar molecules. Phys. Rev. Lett. 101, 243002 (2008).

    Article  ADS  Google Scholar 

  34. Truppe, S. et al. An intense, cold, velocity-controlled molecular beam by frequency-chirped laser slowing. New J. Phys. 19, 022001 (2017).

    Article  ADS  Google Scholar 

  35. Williams, H. J. et al. Characteristics of a magneto-optical trap of molecules. Preprint at http://arxiv.org/abs/1706.07848 (2017).

  36. Weidemüller, M., Esslinger, T., Ol’shanii, M. A., Hemmerich, A. & Hänsch, T. W. A novel scheme for efficient cooling below the photon recoil limit. Europhys. Lett. 27, 109–114 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Devlin for his assistance and insight. We are grateful to J. Dyne, G. Marinaro and V. Gerulis for technical assistance. The research has received funding from EPSRC under grants EP/I012044, EP/M027716, and EP/P01058X/1, and from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement 320789.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of this work.

Corresponding author

Correspondence to M. R. Tarbutt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 341 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truppe, S., Williams, H., Hambach, M. et al. Molecules cooled below the Doppler limit. Nature Phys 13, 1173–1176 (2017). https://doi.org/10.1038/nphys4241

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4241

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing