Abstract
Magneto-optical trapping and sub-Doppler cooling have been essential to most experiments with quantum degenerate gases, optical lattices, atomic fountains and many other applications. A broad set of new applications await ultracold molecules1, and the extension of laser cooling to molecules has begun2,3,4,5,6. A magneto-optical trap (MOT) has been demonstrated for a single molecular species, SrF7,8,9, but the sub-Doppler temperatures required for many applications have not yet been reached. Here we demonstrate a MOT of a second species, CaF, and we show how to cool these molecules to 50 μK, well below the Doppler limit, using a three-dimensional optical molasses. These ultracold molecules could be loaded into optical tweezers to trap arbitrary arrays10 for quantum simulation11, launched into a molecular fountain12,13 for testing fundamental physics14,15,16,17,18, and used to study collisions and chemistry19 between atoms and molecules at ultracold temperatures.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).
Shuman, E. S., Barry, J. F. & DeMille, D. Laser cooling of a diatomic molecule. Nature 467, 820–823 (2010).
Hummon, M. T. et al. 2D magneto-optical trapping of diatomic molecules. Phys. Rev. Lett. 110, 143001 (2013).
Zhelyazkova, V. et al. Laser cooling and slowing of CaF molecules. Phys. Rev. A 89, 053416 (2014).
Hemmerling, B. et al. Laser slowing of CaF molecules to near the capture velocity of a molecular MOT. J. Phys. B 49, 174001 (2016).
Kozyryev, I. et al. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 118, 173201 (2017).
Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).
McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Improved magneto-optical trapping of a diatomic molecule. New J. Phys. 17, 035014 (2015).
Norrgard, E. B., McCarron, D. J., Steinecker, M. H., Tarbutt, M. R. & DeMille, D. Submillikelvin dipolar molecules in a radio-frequency magneto-optical trap. Phys. Rev. Lett. 116, 063004 (2016).
Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary 2d atomic arrays. Science 354, 1021–1023 (2016).
Micheli, A., Brennen, G. K. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341–347 (2006).
Tarbutt, M. R., Sauer, B. E., Hudson, J. J. & Hinds, E. A. Design for a fountain of YbF molecules to measure the electron’s electric dipole moment. New J. Phys. 15, 053034 (2013).
Cheng, C. et al. Molecular fountain. Phys. Rev. Lett. 117, 253201 (2016).
Hudson, J. J. et al. Improved measurement of the shape of the electron. Nature 473, 493–496 (2011).
Baron, J. et al. Order of magnitude smaller limit on the electric dipole moment of the electron. Science 343, 269–272 (2014).
Kajita, M. Variance measurement of mp/me using cold molecules. Can. J. Phys. 87, 743–748 (2009).
Hunter, L. R., Peck, S. K., Greenspon, A. S., Alam, S. S. & DeMille, D. Prospects for laser cooling TlF. Phys. Rev. A 85, 012511 (2012).
Cahn, S. B. et al. Zeeman-tuned rotational-level crossing spectroscopy in a diatomic free radical. Phys. Rev. Lett. 112, 163002 (2014).
Krems, R. V. Cold controlled chemistry. Phys. Chem. Chem. Phys. 10, 4079–4092 (2008).
Steinecker, M. H., McCarron, D. J., Zhu, Y. & DeMille, D. Improved radio-frequency magneto-optical trap of SrF molecules. Chem. Phys. Chem. 17, 3664–3669 (2016).
Tarbutt, M. R. & Steimle, T. C. Modeling magneto-optical trapping of CaF molecules. Phys. Rev. A 92, 053401 (2015).
Devlin, J. A. & Tarbutt, M. R. Three-dimensional Doppler, polarization-gradient, and magneto-optical forces for atoms and molecules with dark states. New J. Phys. 18, 123017 (2016).
Dalibard, J. & Cohen-Tannoudji, C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. J. Opt. Soc. Am. B 6, 2023–2045 (1989).
Ungar, P. J., Weiss, D. S., Riis, E. & Chu, S. Optical molasses and multilevel atoms: theory. J. Opt. Soc. Am. B 6, 2058–2071 (1989).
Boiron, D., Triché, C., Meacher, D. R., Verkerk, P. & Grynberg, G. Three-dimensional cooling of cesium atoms in four-beam gray optical molasses. Phys. Rev. A 52, R3425–R3428 (1995).
Fernandes, D. R. et al. Sub-Doppler laser cooling of fermionic 40K atoms in three-dimensional gray optical molasses. Europhys. Lett. 100, 63001 (2012).
Prehn, A., Ibrügger, M., Glöckner, R., Rempe, G. & Zeppenfeld, M. Optoelectrical cooling of polar molecules to submillikelvin temperatures. Phys. Rev. Lett. 116, 063005 (2016).
André, A. et al. A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators. Nat. Phys. 2, 636–642 (2006).
Lim, J., Frye, M. D., Hutson, J. M. & Tarbutt, M. R. Modeling sympathetic cooling of molecules by ultracold atoms. Phys. Rev. A 92, 053419 (2015).
Fitch, N. J. & Tarbutt, M. R. Principles and design of a Zeeman-Sisyphus decelerator for molecular beams. Chem. Phys. Chem. 17, 3609–3623 (2016).
Wall, T. E. et al. Lifetime of the A(v′ = 0) state and Franck–Condon factor of the A − X(0 − 0) transition of CaF measured by the saturation of laser-induced fluorescence. Phys. Rev. A 78, 062509 (2008).
Dagdigian, P. J., Cruse, H. W. & Zare, R. N. Radiative lifetimes of the alkaline earth monohalides. J. Chem. Phys. 60, 2330–2339 (1974).
Stuhl, B. K., Sawyer, B. C., Wang, D. & Ye, J. Magneto-optical trap for polar molecules. Phys. Rev. Lett. 101, 243002 (2008).
Truppe, S. et al. An intense, cold, velocity-controlled molecular beam by frequency-chirped laser slowing. New J. Phys. 19, 022001 (2017).
Williams, H. J. et al. Characteristics of a magneto-optical trap of molecules. Preprint at http://arxiv.org/abs/1706.07848 (2017).
Weidemüller, M., Esslinger, T., Ol’shanii, M. A., Hemmerich, A. & Hänsch, T. W. A novel scheme for efficient cooling below the photon recoil limit. Europhys. Lett. 27, 109–114 (1994).
Acknowledgements
We thank J. Devlin for his assistance and insight. We are grateful to J. Dyne, G. Marinaro and V. Gerulis for technical assistance. The research has received funding from EPSRC under grants EP/I012044, EP/M027716, and EP/P01058X/1, and from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement 320789.
Author information
Authors and Affiliations
Contributions
All authors contributed to all aspects of this work.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 341 kb)
Rights and permissions
About this article
Cite this article
Truppe, S., Williams, H., Hambach, M. et al. Molecules cooled below the Doppler limit. Nature Phys 13, 1173–1176 (2017). https://doi.org/10.1038/nphys4241
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys4241


