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Berry phase and anomalous transport of the
composite fermions at the half-filled Landau level
W. Pan1*, W. Kang2*, K. W. Baldwin3, K. W.West3, L. N. Pfei�er3 and D. C. Tsui3

The fractional quantum Hall e�ect (FQHE)1,2 in two-
dimensional electron systems is an exotic, superfluid-like
matter with an emergent topological order. From the
consideration of the Aharonov–Bohm interaction between
electrons and magnetic field, the ground state of a half-filled
lowest Landau level is mathematically transformed to a Fermi
sea of composite objects of electrons bound to twoflux quanta,
termed composite fermions (CFs)3–5. A strong support for
the CF theories comes from experimental confirmation of the
predicted Fermi surface at ν = 1/2 (where ν is the Landau
level filling factor) from the detection of the Fermi wavevector
in semi-classical geometrical resonance experiments2,6–9.
Recent developments in the theory of CFs10–21 have led to the
prediction of a π Berry phase for the CF circling around the
Fermi surface at half-filling10,14,17–20. In this paper we provide
experimental evidence for the detection of the Berry phase of
CFs in the fractional quantumHall e�ect.Ourmeasurements of
the Shubnikov–de Haas oscillations of CFs as a function carrier
density at a fixedmagnetic field provide strong support for the
existence of a π Berry phase at ν= 1/2. We also discover that
the conductivity of composite fermions at ν= 1/2 displays an
anomalous linear density dependence, whose origin remains
mysterious yet tantalizing.

Under the framework of the CF theory3–5, the effective magnetic
field, Beff, that the CFs experience in the lowest Landau level
is reduced due to flux attachment so that Beff = B− Bν=1/2. At
half-filling of the Landau level (ν = 1/2), Beff becomes zero and
CFs form a Fermi sea state. This startling prediction of the CF
theory has been verified experimentally2,6–9. Away from ν=1/2, the
ν=n/(2n+1), where n=±1,±2,±3 . . ., FQHE states (also called
the Jain sequence of FQHE states) can be mapped into the ν∗= n
integer quantum Hall effect (IQHE) states of CFs (Supplementary
Fig. 1). The experimentally observed sequence of FQHE states
can be viewed as the density of states oscillations of the pseudo-
Landau levels of CFs under increasing Beff (refs 3–5). The CF
theory has been shown to be extremely proficient in constructing
the wavefunctions of the various FQHE states and in providing
explanations of experiments on the FQHE2,4.

There have been new, interesting developments in the study
of CF in recent years. The interest in CF was reinvigorated
in part from a realization of the significance of particle–hole
symmetry10,15–18,20–23. In particular, a recent experiment on the
commensurability oscillations of CFs observed that the oscillation
minima above and below half-filling are not symmetric with
changing magnetic field23. This result hinted that the nature
of the composite fermions may change from ‘particle-like’
below to ‘hole-like’ above half-filling. Whereas particle–hole
symmetry at half-filling had been accepted without question, its

experimental consequence on the CFs at half-filling remained
largely unexplored.

Many theoretical studies of the particle–hole symmetry in the
FQHE predict a Berry phase of the composite Fermi liquid at
ν=1/2 (refs 10,17–20). In the Dirac theory of CFs at finite den-
sity10–14, the CFs at half-filling are treated as Dirac fermions with a π
Berry phase from its motion about the Fermi surface. An alternate
approach, which considers CFs as charge-neutral particle carrying
vorticity17,18, associates a Berry curvature about theCFFermi surface
at half-filling. A microscopic approach to CFs based on geometrical
considerations also predicts a Berry phase for adiabatic transport
of CFs around the Fermi surface19,24. The connection between the
Dirac theory10–14 and the Halperin, Lee, Read (HLR) theory3 of CFs
was explored recently20. These theories provide various perspectives
into the physics of CFs at the half-filled Landau level. The prediction
of a Berry phase for CFs in the FQHE is a significant new develop-
ment, as its possibility has been overlooked in the past.

In this paper we study CFs at the half-filled Landau level by
studying their density-dependent magnetotransport. To look for
signatures of the predicted Berry phase, we have measured the
density-dependent Shubnikov–de Haas oscillations of magneto-
resistivity, ρxx , around ν = 1/2 at various magnetic fields in two
heterojunction insulated-gate field-effect transistors (HIGFETs)25,
in which the electron density (ne) can be tuned over a large range.
(See details of the characterizations in Supplementary Fig. 2.) Study
of SdH oscillations in the FQHE has been a very useful probe of CFs
in determining their effective mass in the lowest Landau level26,27.
In the case of graphene, studies of SdH oscillations have been
successfully utilized to detect the Berry phase of Dirac fermions
about the Dirac cone28,29. Our Berry phase results can be understood
within the framework of the recently proposed theoretical studies
of CFs at the half-filled Landau level10–21.

Figure 1a shows the SdH oscillations from specimen HIGFET-A
as a function of ne under a fixed magnetic field with B= 10 T.
A series of well-defined FQHE states is observable as a function
of density as SdH oscillation minima around ν = 1/2. Under a
fixed magnetic field B, the density-dependent SdH oscillation of the
magnetoresistivity,1ρxx , can be modelled as

1ρxx=R(ne,T )cos

[
2π

(
nB

n1/2−ne
+β

)]
(1)

where R(ne,T ) is the amplitude of the SdH oscillations as a function
of density and temperature, n1/2 is the density at ν= 1/2 for the
givenB, nB the frequency of the density-dependent SdH oscillations,
and β the associated Berry phase of the CF motion about the Fermi
surface. In our analysis we first locate the densities corresponding
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to the FQHE states at the magnetoresistivity minima of the SdH
oscillations. (The ρxx maxima can be neglected since only the FQHE
states at the minima are relevant for CFs.) The value of the index n
for the respective SdH minima can be independently determined
from the one-to-one correspondence for the Jain states between the
IQHE around B=0 and the FQHE around ν=1/2. The procedure
is illustrated in Supplementary Fig. 1. As shown in Supplementary
Fig. 1, after the Rxx curve is horizontally shifted so that the magnetic
field position at ν= 1/2 overlaps with B= 0, we observe that the
ν = 1/3 and 1 states, the 2/5 and 2 states, the 3/7 and 3 states,
and so on respectively occur at the same positions. Based on this
observation, one can assign an effective integer filling factor to a
FQHE state, that is, filling factor 1 to the 1/3 state, 2 to 2/5, 3 to
3/7, and−2 to 2/3,−3 to 3/5,−4 to 4/7, and so on. The effective
magnetic field B∗n = B− B1/2(ne), where B1/2(ne)= 2neh/e is the
magnetic field at half-filling for an electron density of ne. The inset
of Fig. 1b illustrates how B∗n is determined in such a density sweep.
The value of B∗n is shown as the top axis in Fig. 1a. In Fig. 1b, we plot
the SdH oscillation index n versus 1/B∗n . An intercept of β=−1/2
at 1/B∗n=0 is clearly seen in Fig. 1b. This result shows a Berry phase
of π for the CFs at ν=1/2.

We point out that a similar measurement has been carried
out in graphene to characterize its Berry phase28,29. The chiral
nature of massless Dirac fermions in graphene produces a Berry
phase of π about its Dirac point, resulting in SdH oscillations
that are phase shifted by π relative to two-dimensional (2D)
systems with conventional Fermi surfaces. Experiments have shown
that β determined from the intercept is −1/2 in graphene.
Our measurement likewise illustrates that the density-dependent
SdH oscillations of the CFs demonstrate that β =−1/2, which
corresponds to a π Berry phase about the Fermi surface at ν=1/2.
Wenote here that in the SdHmeasurements at fixed electron density,
the intercept at 1/Bn=0 is zero, yielding a zero for the Berry phase.
Here Bn is defined as Bn=Bν−B1/2 for the effective magnetic field
that CFs see in standard SdH oscillations where the external B field
is varied. We have shown this in one of our high-mobility quantum
well samples in Supplementary Fig. 4.

We also point out that in the proposals of Dirac composite
fermions at finite density10–14 and CFs as neutral particles carrying
vorticity17,18, the CF density, nv , is proportional to the external
magnetic field, nν = eB/2h. Only at ν = 1/2 does nν equal the
underlying electron density (ne). In the HLR theory of CFs,
the density of composite fermions equals the electron density. It
was pointed out by Wang and Senthil that in conventional SdH
measurements at fixed density, both the CF density and its effective
magnetic field change with varying external magnetic field18. Thus
it is not possible to obtain a coherent Berry phase, and β becomes
zero in SdH measurements at fixed density.

Figure 2 summarizes the measurement and analysis of density-
dependent SdH oscillations at different values of fixed magnetic
field. Figure 2a–c shows SdH oscillations about ν= 1/2 for three
different magnetic fields. Figure 2d shows the resulting SdH fan
diagram of n versus 1/B∗n for the density sweeps in Fig. 2a–c, where
all the data converge at a vertical intercept of β=−1/2. A summary
of slope intercepts β determined from the various density sweeps
is shown in Fig. 2e. The slope intercepts from the density sweeps
with different magnetic fields all universally possess a β=−1/2,
confirming the predicted Berry phase of π for the CFs at ν=1/2.

We now turn our attention to the ν=3/2 state, the particle–hole
conjugate state of the 1/2 state. Around ν=3/2, the FQHEoccurs at
ν=2−n/(2n+1). We measure the SdH oscillations as a function
of electron density at a fixed magnetic field and apply the formula
B∗n=3× (B−2h/3e×ne) for the ν=3/2 CFs. With this definition
of effective magnetic field, we arrive at n=−B/2× 1/B∗n − 1/2,
the same as the ν = 1/2 CFs. We note here that the minus sign
in front of B/2 reflects the hole nature of the CFs at ν = 3/2.
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Figure 1 | Composite fermion Shubnikov–de Haas oscillations and Landau
fan diagram in a heterojunction insulated-gate field-e�ect transistor
(HIGFET). a, ρxx as a function of electron density (ne, in units of 1011 cm−2).
The arrows mark several representative FQHE states. Their corresponding
CF pseudo-Landau level filling factor n is indicated with the coloured
numerator, blue for positive and red for negative integers. The index n is
determined independently from the one-to-one correspondence between
the FQHE around ν= 1/2 and the IQHE around B=0, as shown in
Supplementary Fig. 1. For every state with index n, the corresponding filling
factor under the composite fermion theory is given by ν=n/(2n+ 1). The
upper x axis shows the value of B∗n=B−2neh/e. We note that the
particle–hole conjugate states—for example, the 1/3 (n= 1) and 2/3
(n=−2) states—are located equal densities away from ν= 1/2. b, CF
pseudo-Landau level filling factor n versus 1/B∗n . Positive values of n are
shown in blue and negative n values are shown in red. The inset of b
illustrates how B∗n is determined in a density sweep.

Figure 3a shows the SdHoscillations around ν=3/2 as a function of
electron density at a fixedmagnetic field of 5.0 T. The arrowsmark a
few representative FQHE states. In Fig. 3b, we plot n versus 1/B∗n . An
intercept of−1/2 at 1/B∗n=0 is clearly seen, now establishing direct
detection of a π-Berry phase for the CFs at ν= 3/2. A summary
of the slope intercepts determined from the various density sweeps
with different magnetic fields is shown in Supplementary Fig. 5.
They all universally possess the value of−1/2.

For CFs around ν = 3/2, in standard, B-dependent SdH
oscillations, the effective magnetic field of CFs around ν=3/2
is given by Bn=3× (Bν−B3/2)=−neh/e×1/(3n+2), or
n=−neh/3e×1/Bn−2/3. The intercept of −2/3 was
indeed observed in the standard SdH oscillations, as shown
in Supplementary Fig. 6.

In our density-dependent SdH measurement, the density of CFs
depends on themagnetic field at ν=1/2. The CF density, nν , is pro-
portional to the external magnetic field and only at ν=1/2 equals
the underlying electron density ne. Our experimental detection
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Figure 2 | Shubnikov–de Haas oscillations around ν= 1/2 as a function of electron density (ne, in units of 1011 cm−2) in HIGFET-B at a few selected
magnetic fields. a, B= 1.5T. b, 5.0 T. c, 12.0 T. The arrows mark the Landau level filling factors at ν= 1/3, 2/3, and 1, 1/5, respectively. d, CF pseudo-Landau
level filling factor n versus 1/B∗n , where B

∗
n=B−2neh/e. e, Plot of the intercept at 1/B∗n=0 in d versus the external magnetic field.

of the Berry phase in the density-dependent SdH measurement
appears to support the proposal that the CF density is proportional
to B1/2, the magnetic field at ν= 1/2, and not the electron density.
However, our observation of the Berry phase cannot be viewed as
evidence of the Dirac fermions10–14 or the neutral vortex theories
of CF17,18. The Berry phase at ν= 1/2 appears to be an emergent,
universal feature of the underlying CF liquid10–24 as electrons seek to
minimize their interaction energy in the lowest Landau level.

In contrast to similar experiments in graphene, a Dirac point
in the lowest Landau level cannot be directly observed in GaAs
heterostructures or similar systems. In the context of the Dirac
fermion theory of CFs10–14, an effectiveDirac pointmay be discussed
as an extrapolation from higher-lying pseudo-CF Landau levels.
Direct detection of such a Dirac point is beyond the scope of
the present experiment. It follows that our observation of the π
Berry phase of CFs establishes an important, previously unrealized
correlation of CFs.

In Fig. 4 we present the first ever result for the density
dependence of CF conductivity, which in principle provides an
important insight into the transport of CFs at ν = 1/2. A plot
of 1/ρxx at ν = 1/2, obtained in the two HIGFETs, is shown
as a function of electron density ne. Since the conductivity
of CFs, σCF∼=1/ρxx× (1+ (ρxx/ρxy)2) (ref. 17) at ν = 1/2, and
with (ρxx/ρxy)2< 0.1%, σCF∼= 1/ρxx . Both HIGFETs show that the
conductivity of CFs shows a linear dependence over a large density
range from ∼2× 1010 to 1.4× 1011 cm−2. A linear dependence of
conductivity was also observed for the CFs at ν= 3/2, as shown
in Supplementary Fig. 7. Differing from the results at ν = 1/2
and 3/2, the conductivity of electrons at B= 0 follows a n2

e density
dependence (details shown in Supplementary Fig. 8).

At this point we do not understand the origin of this striking
linear density dependence of conductivity at ν= 1/2. While a 2D
electron systems in a heterostructure with an appropriate form of
disordermay have a conductivity σxx∼nα ,α≈1 at ν=1/2 (ref. 30),
it is unclear how well this theory applies to our HIGFET device,
which has no doping and instead relies on electrostatic gating.

The observed linear density dependence of conductivity at
ν=1/2 may be viewed in terms of a constant CF mobility, µ∗, with
σCF=nνeµ∗. Consequently, the scattering time τ∗=µ∗m∗/e∝n1/2

ν
,

since the effective mass of CFs, m∗∝ n1/2
ν

(ref. 31). This apparent
τ ∗∝ n1/2

ν
behaviour differs from the HLR theory3, where the CF

scattering time τ ∗ ∝m∗kF ∝ nν , since the Fermi wavevector for
CFs, kF ∝ n1/2

ν
. Moreover, from the Dingle analysis of the SdH

oscillations around ν=1/2 (Supplementary Fig. 9), it was observed
that CF Landau level broadening (or momentum scattering time)
shows a weak density dependence. More studies will be needed to
understand the origin of this weak density-dependent behaviour
and whether it is responsible for the linear density dependence of
CF conductivity.

In the context of the Dirac theory of CFs10–14 or the neutral
vorticity theory18,19, the density of CF at ν= 1/2 is nν= eB1/2/2h.
Then the conductivity at the half-filling, σxx∼ nν∼B1/2, provided
that µ∗ is constant. Interestingly, it was shown experimentally
in ultra-clean specimens that longitudinal resistivities at even
denominator fillings are linearwithmagnetic field32,33. The observed
behaviour is consistent with our results, since ρxx ∼ σxx ∼ B1/2.
Our finding therefore hints at the possibility of some novel exotic
entanglement of the CFs at half-filling.

It is well known that the conductivity of 2D Dirac fermions—for
example, in graphene—displays a linear density dependence, due to
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Figure 4 | Conductivity of composite fermions at ν= 1/2 in two HIGFETs.
The two HIGFETs have di�erent growth structures and, thus, peak
mobilities. In the density range between 2× 1010 and 1.4× 1011 cm−2, the
conductivity displays a linear density dependence in both samples.

its linear dispersion28,29. Since there is no experimental evidence yet
available for the existence of Dirac fermions at ν=1/2, it is unclear
if there is any connection between the linear density dependence
of graphene and the CFs at ν = 1/2 at this time. At minimum,
a further clarification of the scattering time will be necessary to
better understand this puzzling behaviour of the CFs at the half-
filled Landau level.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Heterojunction insulated-gated field-effect transistors (HIGFETs)25 were exploited
for measurements of the SdH oscillations and composite fermion conductivity. The
growth structure of a typical HIGFET and the density dependence of mobility can
be found in ref. 25. A low-frequency (∼11Hz) lock-in (Princeton Applied
Research 124A) technique was used to collect Rxx and Rxy as a function of electron
density by sweeping the gate voltage at a fixed magnetic (B) field. ρxx is obtained
from the measured Rxx by taking into account the geometric ratio and ρxy=Rxy in
two dimensions.

Some of the unique, relevant aspects of HIGFETs are worth pointing out.
In a HIGFET device, a heavily doped GaAs top layer serves as the top gate, which
is a significant improvement over commonly used Ti/Au or Cr/Au gates for
realizing a uniform 2D electron system. The differential thermal expansion
between Ti/Au (or Cr/Au) and GaAs is known to induce a severe electron density
(ne) inhomogeneity when the specimen is cooled from room temperature
down to cryogenic temperatures. In addition, the insulating AlGaAs buffer

layer in HIGFET devices is grown by molecular beam epitaxy (MBE), and
considerably more uniform than the dielectric layers commonly used in
field-effect transistors. The density of charge traps is reduced to the lowest level
possible, and the linear relationship of ne versus Vg can hold down to very
low densities.

The spatial uniformity of electron density can be attested by the observation of
a perfectly linear relationship in Supplementary Fig. 2d. Achieving a very low
charge trap density in our HIGFET was confirmed by observing a perfect overlap
between the two traces of Vg sweeping up and down. Finally, in all the HIGFET
devices we studied, an electron mobility of µ∼1×106 cm2 V−1 s−1 was achieved at
ne∼2×1010 cm−2, as shown in Supplementary Fig. 3. Such a high sample quality
effectively eliminates disorder effects.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding authors upon
reasonable request.
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