Nonlinear flow response of soft hair beds


We are ‘hairy’ on the inside: beds of passive fibres anchored to a surface and immersed in fluids are prevalent in many biological systems, including intestines, tongues, and blood vessels. These hairs are soft enough to deform in response to stresses from fluid flows. Yet fluid stresses are in turn affected by hair deformation, leading to a coupled elastoviscous problem that is poorly understood. Here we investigate a biomimetic model system of elastomer hair beds subject to shear-driven Stokes flows. We characterize this system with a theoretical model that accounts for the large-deformation flow response of hair beds. Hair bending results in a drag-reducing nonlinearity because the hair tip lowers towards the base, widening the gap through which fluid flows. When hairs are cantilevered at an angle subnormal to the surface, flow against the grain bends hairs away from the base, narrowing the gap. The flow response of angled hair beds is axially asymmetric and amounts to a rectification nonlinearity. We identify an elastoviscous parameter that controls nonlinear behaviour. Our study raises the hypothesis that biological hairy surfaces function to reduce fluid drag. Furthermore, angled hairs may be incorporated in the design of integrated microfluidic components, such as diodes and pumps.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Physical model of deformable hair beds coupled to low-Reynolds-number fluid flows.
Figure 2: Reconfiguration of beds of straight hairs.
Figure 3: The reconfiguration regime of straight hairs is characterized by a negative Vogel exponent.
Figure 4: Angled hairs break reflection symmetry, both in geometry as well as in drag response.
Figure 5: The reconfiguration regime of angled hairs is characterized by a Vogel exponent that can attain positive values when flow is against the grain.


  1. 1

    Audoly, B. & Pomeau, Y. Elasticity and Geometry: From Hair Curls to the Non-linear Response of Shells (Oxford Univ. Press, 2010).

    Google Scholar 

  2. 2

    Vogel, S. & Davis, K. K. Cats’ Paws and Catapults: Mechanical Worlds of Nature and People (Norton, 2000).

    Google Scholar 

  3. 3

    Stoop, N., Lagrange, R., Terwagne, D., Reis, P. M. & Dunkel, J. Curvature-induced symmetry breaking determines elastic surface patterns. Nat. Mater. 14, 337–342 (2015).

    ADS  Article  Google Scholar 

  4. 4

    Krishnamurthy, D., Katsikis, G., Bhargava, A. & Prakash, M. Schistosoma mansoni cercariae swim efficiently by exploiting an elastohydrodynamic coupling. Nat. Phys. 13, 266–271 (2016).

    Article  Google Scholar 

  5. 5

    Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    ADS  Article  Google Scholar 

  6. 6

    Kwak, M. K., Jeong, H.-E., Kim, T.-i., Yoon, H. & Suh, K. Y. Bio-inspired slanted polymer nanohairs for anisotropic wetting and directional dry adhesion. Soft Matter 6, 1849–1857 (2010).

    ADS  Article  Google Scholar 

  7. 7

    Guo, P., Weinstein, A. M. & Weinbaum, S. A hydrodynamic mechanosensory hypothesis for brush border microvilli. Am. J. Physiol. 279, F698–F712 (2000).

    Google Scholar 

  8. 8

    Harper, C. J., Swartz, S. M. & Brainerd, E. L. Specialized bat tongue is a hemodynamic nectar mop. Proc. Natl Acad. Sci. USA 110, 8852–8857 (2013).

    ADS  Article  Google Scholar 

  9. 9

    Schwartz, E. A., Leonard, M. L., Bizios, R. & Bowser, S. S. Analysis and modeling of the primary cilium bending response to fluid shear. Am. J. Physiol. 272, F132–F138 (1997).

    Google Scholar 

  10. 10

    Young, Y. N., Downs, M. & Jacobs, C. R. Dynamics of the primary cilium in shear flow. Biophys. J. 103, 629–639 (2012).

    ADS  Article  Google Scholar 

  11. 11

    Weinbaum, S., Zhang, X., Han, Y., Vink, H. & Cowin, S. C. Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl Acad. Sci. USA 100, 7988–7995 (2003).

    ADS  Article  Google Scholar 

  12. 12

    Weinbaum, S., Tarbell, J. M. & Damiano, E. R. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 9, 121–167 (2007).

    Article  Google Scholar 

  13. 13

    VanTeeffelen, J. W., Brands, J., Stroes, E. S. & Vink, H. Endothelial glycocalyx: sweet shield of blood vessels. Trends Cardiovasc. Med. 17, 101–105 (2007).

    Article  Google Scholar 

  14. 14

    Vogel, S. Drag and reconfiguration of broad leaves in high winds. J. Exp. Bot. 40, 941–948 (1989).

    Article  Google Scholar 

  15. 15

    Luhar, M. & Nepf, H. M. Flow-induced reconfiguration of buoyant and flexible aquatic vegetation. Limnol. Oceanogr. 56, 2003–2017 (2011).

    ADS  Article  Google Scholar 

  16. 16

    Albayrak, I., Nikora, V., Miler, O. & O’Hare, M. T. Flow–plant interactions at leaf, stem and shoot scales: drag, turbulence, and biomechanics. Aquat. Sci. 76, 269–294 (2013).

    Article  Google Scholar 

  17. 17

    Vollsinger, S., Mitchell, S. J., Byrne, K. E., Novak, M. D. & Rudnicki, M. Wind tunnel measurements of crown streamlining and drag relationships for several hardwood species. Can. J. For. Res. 35, 1238–1249 (2005).

    Article  Google Scholar 

  18. 18

    Alben, S., Shelley, M. & Zhang, J. Drag reduction through self-similar bending of a flexible body. Nature 420, 479–481 (2002).

    ADS  Article  Google Scholar 

  19. 19

    Favier, J., Dauptain, A., Basso, D. & Bottaro, A. Passive separation control using a self-adaptive hairy coating. J. Fluid Mech. 627, 451–483 (2009).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  20. 20

    Battiato, I., Bandaru, P. R. & Tartakovsky, D. M. Elastic response of carbon nanotube forests to aerodynamic stresses. Phys. Rev. Lett. 105, 144504 (2010).

    ADS  Article  Google Scholar 

  21. 21

    Gosselin, F., De Langre, E. & Machado-Almeida, B. Drag reduction of flexible plates by reconfiguration. J. Fluid Mech. 650, 319–341 (2010).

    ADS  MATH  Article  Google Scholar 

  22. 22

    Gosselin, F. P. & de Langre, E. Drag reduction by reconfiguration of a poroelastic system. J. Fluids Struct. 27, 1111–1123 (2011).

    ADS  Article  Google Scholar 

  23. 23

    Brücker, C. Progress in Turbulence and Wind Energy IV 191–196 (Springer, 2012).

    Google Scholar 

  24. 24

    de Langre, E., Gutierrez, A. & Cossé, J. On the scaling of drag reduction by reconfiguration in plants. C. R. Méc. 340, 35–40 (2012).

    ADS  Article  Google Scholar 

  25. 25

    Schouveiler, L. & Eloy, C. Flow-induced draping. Phys. Rev. Lett. 111, 064301 (2013).

    ADS  Article  Google Scholar 

  26. 26

    Leclercq, T. & de Langre, E. Drag reduction by elastic reconfiguration of non-uniform beams in non-uniform flows. J. Fluids Struct. 60, 114–129 (2016).

    ADS  Article  Google Scholar 

  27. 27

    Duprat, C., Protière, S., Beebe, A. Y. & Stone, H. A. Wetting of flexible fibre arrays. Nature 482, 510–513 (2012).

    ADS  Article  Google Scholar 

  28. 28

    Saintyves, B., Jules, T., Salez, T. & Mahadevan, L. Self-sustained lift and low friction via soft lubrication. Proc. Natl Acad. Sci. USA 113, 5847–5849 (2016).

    ADS  Article  Google Scholar 

  29. 29

    Fluid-Structure Interactions in Low-Reynolds-Number Flows (eds Duprat, C. & Stone, H.) (RSC Soft Matter Series, The Royal Society of Chemistry, 2016).

  30. 30

    Trouilloud, R., Yu, T. S., Hosoi, A. E. & Lauga, E. Soft swimming: exploiting deformable interfaces for low Reynolds number locomotion. Phys. Rev. Lett. 101, 048102 (2008).

    ADS  Article  Google Scholar 

  31. 31

    Coq, N., du Roure, O., Marthelot, J., Bartolo, D. & Fermigier, M. Rotational dynamics of a soft filament: wrapping transition and propulsive forces. Phys. Fluids 20, 051703 (2008).

    ADS  MATH  Article  Google Scholar 

  32. 32

    Wexler, J. S. et al. Bending of elastic fibres in viscous flows: the influence of confinement. J. Fluid Mech. 720, 517–544 (2013).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  33. 33

    Kundu, P. K., Cohen, I. M. & Dowling, D. R. Fluid Mechanics (Elsevier Science, 2015).

    Google Scholar 

  34. 34

    Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977).

    ADS  Article  Google Scholar 

  35. 35

    Gopinath, A. & Mahadevan, L. Elastohydrodynamics of wet bristles, carpets and brushes. Proc. R. Soc. A 467, 1665–1685 (2011).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  36. 36

    Brücker, C., Spatz, J. & Schröder, W. Feasability study of wall shear stress imaging using microstructured surfaces with flexible micropillars. Exp. Fluids 39, 464–474 (2005).

    Article  Google Scholar 

  37. 37

    Große, S., Schröder, W. & Brücker, C. Nano-newton drag sensor based on flexible micro-pillars. Meas. Sci. Technol. 17, 2689–2697 (2006).

    ADS  Article  Google Scholar 

  38. 38

    Brücker, C., Bauer, D. & Chaves, H. Dynamic response of micro-pillar sensors measuring fluctuating wall-shear-stress. Exp. Fluids 42, 737–749 (2007).

    Article  Google Scholar 

  39. 39

    Brücker, C. Interaction of flexible surface hairs with near-wall turbulence. J. Phys. Condens. Matter 23, 184120 (2011).

    ADS  Article  Google Scholar 

  40. 40

    Paek, J. & Kim, J. Microsphere-assisted fabrication of high aspect-ratio elastomeric micropillars and waveguides. Nat. Commun. 5, 3324 (2014).

    ADS  Article  Google Scholar 

  41. 41

    Brücker, C. Evidence of rare backflow and skin-friction critical points in near-wall turbulence using micropillar imaging. Phys. Fluids 27, 031705 (2015).

    ADS  Article  Google Scholar 

  42. 42

    Groisman, A. & Quake, S. A microfluidic rectifier: anisotropic flow resistance at low Reynolds numbers. Phys. Rev. Lett. 92, 094501 (2004).

    ADS  Article  Google Scholar 

  43. 43

    Mates, J. E., Schutzius, T. M., Qin, J., Waldroup, D. E. & Megaridis, C. M. The fluid diode: tunable unidirectional flow through porous substrates. ACS Appl. Mater. Interfaces 6, 12837–12843 (2014).

    Article  Google Scholar 

  44. 44

    Li, L., Mo, J. & Li, Z. Nanofluidic diode for simple fluids without moving parts. Phys. Rev. Lett. 115, 134503–134505 (2015).

    ADS  Article  Google Scholar 

  45. 45

    Nasto, A. et al. Air entrainment in hairy surfaces. Phys. Rev. Fluids 1, 033905 (2016).

    ADS  Article  Google Scholar 

Download references


We thank A. Nasto, A. Helal, A. Gopinath, K. Hood and B. Keshavarz for insightful discussions; K. Broderick for fabrication assistance; F. Frankel for photography of hairs; and S. Lin for tensiometry experiment. A.E.H. acknowledges support from the Defense Advanced Research Projects Agency and US Army Research Office under grant numbers DARPA W31P4Q-13-1-0013 and ARO W911NF-15-1-0166. J.A. acknowledges support the US Army Research Office under grant number W911NF-14-1-0396.

Author information




J.A., J.C. and A.E.H. conceived the project. J.A. performed experiments. J.A., J.C. and E.d.L. contributed to theoretical models. All authors contributed to the paper.

Corresponding author

Correspondence to A. E. Hosoi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 895 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alvarado, J., Comtet, J., de Langre, E. et al. Nonlinear flow response of soft hair beds. Nature Phys 13, 1014–1019 (2017).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing