Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coexistence of ultra-long spin relaxation time and coherent charge transport in organic single-crystal semiconductors


Coherent charge transport can occur in organic semiconductor crystals thanks to the highly periodic electrostatic potential—despite the weak van der Waals bonds. And as spin–orbit coupling is usually weak in organic materials, robust spin transport is expected, which is essential if they are to be exploited for spintronic applications. In such systems, momentum relaxation occurs via scattering events, which enables an intrinsic mobility to be defined for band-like charge transport, which is >10 cm2 V−1 s−1. In contrast, there are relatively few experimental studies of the intrinsic spin relaxation for organic band-transport systems. Here, we demonstrate that the intrinsic spin relaxation in organic semiconductors is also caused by scattering events, with much less frequency than the momentum relaxation. Magnetotransport measurements and electron spin resonance spectroscopy consistently show a linear relationship between the two relaxation times over a wide temperature range, clearly manifesting the Elliott–Yafet type of spin relaxation mechanism. The coexistence of an ultra-long spin lifetime of milliseconds and the coherent band-like transport, resulting in a micrometre-scale spin diffusion length, constitutes a key step towards realizing spintronic devices based on organic single crystals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Coherent charge transport in a single crystal of C10–DNBDT–NW.
Figure 2: Temperature-dependent mobility of the C10–DNBDT–NW single crystal.
Figure 3: Correlation between charge and spin relaxation times in single-crystal C10–DNBDT–NW.


  1. 1

    Takeya, J. et al. Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl. Phys. Lett. 90, 102120 (2007).

    ADS  Article  Google Scholar 

  2. 2

    Minemawari, H. et al. Inkjet printing of single-crystal films. Nature 475, 364–367 (2011).

    ADS  Article  Google Scholar 

  3. 3

    Mitsui, C. et al. High-performance solution-processable N-Shaped organic semiconducting materials with stabilized crystal phase. Adv. Mater. 26, 4546–4551 (2014).

    Article  Google Scholar 

  4. 4

    Podzorov, V., Menard, E., Rogers, J. A. & Gershenson, M. E. Hall effect in the accumulation layers on the surface of organic semiconductors. Phys. Rev. Lett. 95, 226601 (2005).

    ADS  Article  Google Scholar 

  5. 5

    Takeya, J. et al. In-crystal and surface charge transport of electric-field-induced carriers in organic single-crystal semiconductors. Phys. Rev. Lett. 98, 196804 (2007).

    ADS  Article  Google Scholar 

  6. 6

    Uemura, T. et al. Band-like transport in solution-crystallized organic transistors. Curr. Appl. Phys. 12, S87–S91 (2012).

    Article  Google Scholar 

  7. 7

    Hava, S. & Auslender, M. Springer Handbook of Electronic and Photonic Materials 441–480 (Springer, 2006).

    Book  Google Scholar 

  8. 8

    Dediu, V. A., Hueso, L. E., Bergenti, I. & Taliani, C. Spin routes in organic semiconductors. Nat. Mater. 8, 707–716 (2009).

    ADS  Article  Google Scholar 

  9. 9

    Watanabe, S. et al. Polaron spin current transport in organic semiconductors. Nat. Phys. 10, 308–313 (2014).

    Article  Google Scholar 

  10. 10

    Elliott, R. J. Theory of the effect of spin–orbit coupling on magnetic resonance in some semiconductors. Phys. Rev. 96, 266–279 (1954).

    ADS  Article  Google Scholar 

  11. 11

    Yafet, Y. in Solid State Physics Vol. 14 (eds Seitz, F. & Turnbull, D.) Ch. 1, 1–98 (Academic, 1963).

    Google Scholar 

  12. 12

    Beuneu, F. & Monod, P. The Elliott relation in pure metals. Phys. Rev. B 18, 2422–2425 (1978).

    ADS  Article  Google Scholar 

  13. 13

    Chazalviel, J. N. Spin relaxation of conduction electrons in n-type indium antimonide at low temperature. Phys. Rev. B 11, 1555–1562 (1975).

    ADS  Article  Google Scholar 

  14. 14

    Xiong, Z., Wu, D., Vardeny, Z. V. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).

    ADS  Article  Google Scholar 

  15. 15

    Drew, A. J. et al. Direct measurement of the electronic spin diffusion length in a fully functional organic spin valve by low-energy muon spin rotation. Nat. Mater. 8, 109–114 (2009).

    ADS  Article  Google Scholar 

  16. 16

    McCamey, D. et al. Hyperfine-field-mediated spin beating in electrostatically bound charge carrier pairs. Phys. Rev. Lett. 104, 017601 (2010).

    ADS  Article  Google Scholar 

  17. 17

    Nguyen, T., Gautam, B., Ehrenfreund, E. & Vardeny, Z. V. Magnetoconductance response in unipolar and bipolar organic diodes at ultrasmall fields. Phys. Rev. Lett. 105, 166804 (2010).

    ADS  Article  Google Scholar 

  18. 18

    Soeda, J. et al. Inch-size solution-processed single-crystalline films of high-mobility organic semiconductors. Appl. Phys. Exp. 6, 076503 (2013).

    ADS  Article  Google Scholar 

  19. 19

    Häusermann, R. et al. Device performance and density of trap states of organic and inorganic field-effect transistors. Org. Electron. 28, 306–313 (2016).

    Article  Google Scholar 

  20. 20

    Blülle, B., Troisi, A., Häusermann, R. & Batlogg, B. Charge transport perpendicular to the high mobility plane in organic crystals: bandlike temperature dependence maintained despite hundredfold anisotropy. Phys. Rev. B 93, 035205 (2016).

    ADS  Article  Google Scholar 

  21. 21

    Troisi, A. Dynamic disorder in molecular semiconductors: charge transport in two dimensions. J. Chem. Phys. 134, 034702 (2011).

    ADS  Article  Google Scholar 

  22. 22

    Fratini, S., Mayou, D. & Ciuchi, S. The transient localization scenario for charge transport in crystalline organic materials. Adv. Funct. Mater. 26, 2292–2315 (2016).

    Article  Google Scholar 

  23. 23

    Malissa, H. et al. Room-temperature coupling between electrical current and nuclear spins in OLEDs. Science 345, 1487–1490 (2014).

    ADS  Article  Google Scholar 

  24. 24

    Waters, D. et al. The spin-Dicke effect in OLED magnetoresistance. Nat. Phys. 11, 910–914 (2015).

    Article  Google Scholar 

  25. 25

    Alger, R. S. Electron Paramagnetic Resonance: Techniques and Applications (John Wiley, 1968).

    Google Scholar 

  26. 26

    Marumoto, K., Kuroda, S.-i., Takenobu, T. & Iwasa, Y. Spatial extent of wave functions of gate-induced hole carriers in pentacene field-effect devices as investigated by electron spin resonance. Phys. Rev. Lett. 97, 256603 (2006).

    ADS  Article  Google Scholar 

  27. 27

    Matsui, H., Hasegawa, T., Tokura, Y., Hiraoka, M. & Yamada, T. Polaron motional narrowing of electron spin resonance in organic field-effect transistors. Phys. Rev. Lett. 100, 126601 (2008).

    ADS  Article  Google Scholar 

  28. 28

    Wu, M. W., Jiang, J. H. & Weng, M. Q. Spin dynamics in semiconductors. Phys. Rep. 493, 61–236 (2010).

    ADS  MathSciNet  Article  Google Scholar 

  29. 29

    Nguyen, T. D. et al. Isotope effect in spin response of π-conjugated polymer films and devices. Nat. Mater. 9, 345–352 (2010).

    ADS  Article  Google Scholar 

  30. 30

    Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nat. Phys. 3, 197–202 (2007).

    Article  Google Scholar 

  31. 31

    Drew, A. J. et al. Intrinsic mobility limit for anisotropic electron transport in Alq3 . Phys. Rev. Lett. 100, 116601 (2008).

    ADS  Article  Google Scholar 

  32. 32

    Wetzelaer, G., Koster, L. & Blom, P. Validity of the Einstein relation in disordered organic semiconductors. Phys. Rev. Lett. 107, 066605 (2011).

    ADS  Article  Google Scholar 

  33. 33

    Yu, Z. Spin–orbit coupling and its effects in organic solids. Phys. Rev. B 85, 115201 (2012).

    ADS  Article  Google Scholar 

Download references


J.Tsurumi was supported by a Grant-in-Aid for JSPS (Japan Society for the Promotion of Science) Research Fellows. S.W. thanks PRESTO-JST ‘Hyper-nano-space design toward Innovative Functionality (Grant No. JPMJPR151E)’, Leading Initiative for Excellent Young Researchers (LEADER-JSPS), and the Noguchi Institute for financial support. T.O. thanks PRESTO-JST ‘Molecular Technology and Creation of New Functions (Grant No. JPMJPR13K5)’. This work was partly supported by a KAKENHI Grant-in-Aid (No. 15H05455) from JSPS. The authors thank H. Ishii of Tsukuba University and S. Fratini of Institut Néel for stimulating discussions. We thank Asahi Glass Co., Ltd. for providing EPRIMA AL.

Author information




J.Tsurumi conceived, designed, and performed the ESR experiments. J.Tsurumi and H.M. analysed the data. T.K., R.H. and J.Tsurumi performed the Hall effect measurements. C.M. and T.O. synthesized and purified C10–DNBDT–NW. J.Tsurumi and S.W. wrote the manuscript with significant input from H.M. and J.Takeya. S.W. and J.Takeya supervised this work. All authors discussed the results and reviewed the manuscript.

Corresponding authors

Correspondence to Shun Watanabe or Jun Takeya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1060 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsurumi, J., Matsui, H., Kubo, T. et al. Coexistence of ultra-long spin relaxation time and coherent charge transport in organic single-crystal semiconductors. Nature Phys 13, 994–998 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing