Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Negative permittivity in bubble and stripe phases

Abstract

The physics of itinerant electrons in condensed matter is by and large governed by repulsive Coulomb forces. However, attractive interactions may emerge and prevail in determining the ground state despite the pervasive Coulomb repulsion. A notable example is electron pairing and superconductivity. The interplay of attractive and repulsive interactions may also instigate spontaneous symmetry lowering and clustering of charges in geometric patterns even without net attraction. Both types of attractive interaction triggered physics—pairing and charge ordering—are at play in two-dimensional electron systems exposed to a quantizing magnetic field. The charge ordering has been concluded indirectly from transport behaviour. Here we report the observation of negative permittivity present solely when bubble and stripe phases form. In conjunction with a theoretical model, the negative permittivity provides evidence for the underlying attractive exchange-correlation energy which sufficiently countervails Coulomb repulsion at small distances to enable and mediate charge clustering.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Density-modulated phases in the quantum Hall regime: theory and experimental set-up.
Figure 2: Density-modulated phases in the quantum Hall regime: experiment.
Figure 3: On the origin of the negative velocity shift.
Figure 4: Reentrant states in the second Landau level.

References

  1. Ezawa, Z. F. Quantum Hall Effects (World Scientific Publishing Company, 2008).

    Book  Google Scholar 

  2. Moore, G. & Read, N. Nonabelians in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991).

    ADS  Article  Google Scholar 

  3. Greiter, M., Wen, X. G. & Wilczek, F. Paired Hall states. Nucl. Phys. B 374, 567–614 (1992).

    ADS  MathSciNet  Article  Google Scholar 

  4. Stern, A. Non-Abelian states of matter. Nature 464, 187–193 (2010).

    ADS  Article  Google Scholar 

  5. Koulakov, A. A., Fogler, M. M. & Shklovskii, B. I. Charge density wave in two-dimensional electron liquid in weak magnetic field. Phys. Rev. Lett. 76, 499–502 (1996).

    ADS  Article  Google Scholar 

  6. Fogler, M. M., Koulakov, A. A. & Shklovskii, B. I. Ground state of a two-dimensional electron liquid in a weak magnetic field. Phys. Rev. B 54, 1853–1871 (1996).

    ADS  Article  Google Scholar 

  7. Moessner, R. & Chalker, J. T. Exact results for interacting electrons in high Landau levels. Phys. Rev. B 54, 5006–5015 (1996).

    ADS  Article  Google Scholar 

  8. Fogler, M. M. High Magnetic Fields: Applications in Condensed Matter Physics and Spectroscopy Stripe and bubble phases in quantum Hall systems. 98–138 (Springer, 2002).

    Chapter  Google Scholar 

  9. Lilly, M. P., Cooper, K. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Evidence for an anisotropic state of two-dimensional electrons in high Landau levels. Phys. Rev. Lett. 82, 394–397 (1999).

    ADS  Article  Google Scholar 

  10. Du, R. R. et al. Strongly anisotropic transport in higher two-dimensional Landau levels. Solid State Commun. 109, 389–394 (1999).

    ADS  Article  Google Scholar 

  11. Cooper, K. B., Lilly, M. P., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Insulating phases of two-dimensional electrons in high Landau levels: observation of sharp thresholds to conduction. Phys. Rev. B 60, R11285–R11288 (1999).

    ADS  Article  Google Scholar 

  12. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    ADS  Article  Google Scholar 

  13. Tranquada, M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

    ADS  Article  Google Scholar 

  14. Hinkov, V. et al. Electronic liquid crystal state in the high-temperature superconductor YBa2Cu3O6.45 . Science 319, 597–600 (2008).

    Article  Google Scholar 

  15. Hashimoto, M. et al. Direct spectroscopic evidence for phase competition between the pseudogap and superconductivity in Bi2Sr2CaCu2O8+d . Nat. Mat. 14, 37–42 (2014).

    Article  Google Scholar 

  16. Xia, J. S. et al. Electron correlation in the second Landau level: a competition between many nearly degenerate quantum phases. Phys. Rev. Lett. 93, 176809 (2004).

    ADS  Article  Google Scholar 

  17. Lilly, M. P., Cooper, K. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Anisotropic states of two-dimensional electron systems in high Landau levels: effect of an in-plane magnetic field. Phys. Rev. Lett. 83, 824–827 (1999).

    ADS  Article  Google Scholar 

  18. Pan, W. et al. Strongly anisotropic electronic transport at Landau level filling factor ν = 9/2 and ν = 5/2 under a tilted magnetic field. Phys. Rev. Lett. 83, 820–823 (1999).

    ADS  Article  Google Scholar 

  19. Samkharadze, N. et al. Observation of a transition from a topologically ordered to a spontaneously broken symmetry phase. Nat. Phys. 12, 191–195 (2016).

    Article  Google Scholar 

  20. Fradkin, E. & Kivelson, S. A. Liquid-crystal phases of quantum Hall systems. Phys. Rev. B 59, 8065–8072 (1999).

    ADS  Article  Google Scholar 

  21. Kukushkin, I. V., Umansky, V., von Klitzing, K. & Smet, J. H. Collective modes and the periodicity of quantum Hall stripes. Phys. Rev. Lett. 106, 206804 (2011).

    ADS  Article  Google Scholar 

  22. Friess, B., Umansky, V., Tiemann, L., von Klitzing, K. & Smet, J. H. Probing the microscopic structure of the stripe phase at filling factor 5/2. Phys. Rev. Lett. 113, 076803 (2014).

    ADS  Article  Google Scholar 

  23. Friess, B. Spin and Charge Ordering in the Quantum Hall Regime (Springer, 2016).

    Book  Google Scholar 

  24. Bello, M. S., Levin, E. I., Shklovskii, B. I. & Éfros, A. L. Density of localized states in the surface impurity band of a metal–insulator–semiconductor structure. J. Exp. Theor. Phys. 53, 822–829 (1981).

    Google Scholar 

  25. Kravchenko, S. G., Pudaloy, V. M. & Semenchinsky, S. G. Negative density of states of 2D electrons in a strong magnetic field. Phys. Lett. A 141, 71–74 (1989).

    ADS  Article  Google Scholar 

  26. Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Negative compressibility of interacting two-dimensional electron and quasiparticle gases. Phys. Rev. Lett. 68, 674–677 (1992).

    ADS  Article  Google Scholar 

  27. Hutson, A. R. & White, D. L. Elastic wave propagation in piezoelectric semiconductors. J. Appl. Phys. 33, 40–47 (1962).

    ADS  Article  Google Scholar 

  28. Wixforth, A. et al. Surface acoustic waves on GaAs/AlxGa1−xAs heterostructures. Phys. Rev. B. 40, 7874–7887 (1989).

    ADS  Article  Google Scholar 

  29. Willett, R. L. et al. Anomalous sound propagation at ν = 1/2 in a 2D electron gas: observation of a spontaneously broken translational symmetry? Phys. Rev. Lett. 65, 112–115 (1990).

    ADS  Article  Google Scholar 

  30. Larkin, A. I. Effect of inhomogeneities on the structure of the mixed state of superconductors. Sov. Phys. JETP 31, 784–786 (1970).

    ADS  Google Scholar 

  31. Fogler, M. M. & Huse, D. A. Dynamical response of a pinned two-dimensional Wigner crystal. Phys. Rev. B 62, 7553–7570 (2000).

    ADS  Article  Google Scholar 

  32. Côté, R. & MacDonald, A. H. Phonons as collective modes: the case of a two-dimensional Wigner crystal in a strong magnetic field. Phys. Rev. Lett. 65, 2662–2665 (1990).

    ADS  Article  Google Scholar 

  33. Lewis, R. M. et al. Microwave resonance of the bubble phases in 1/4 and 3/4 filled high Landau levels. Phys. Rev. Lett. 89, 136804 (2002).

    ADS  Article  Google Scholar 

  34. Sambandamurthy, G. et al. Observation of pinning mode of stripe phases of 2D systems in high Landau levels. Phys. Rev. Lett. 100, 256801 (2008).

    ADS  Article  Google Scholar 

  35. Ilani, S., Donev, L. A. K., Kindermann, M. & McEuen, P. L. Measurement of the quantum capacitance of interacting electrons in carbon nanotubes. Nat. Phys. 2, 687–691 (2006).

    Article  Google Scholar 

  36. Li, L. et al. Very large capacitance enhancement in a two-dimensional electron system. Science 332, 825–828 (2011).

    ADS  Article  Google Scholar 

  37. Yu, G. L. et al. Interaction phenomena in graphene seen through quantum capacitance. Proc. Natl Acad. Sci. USA 110, 3282–3286 (2013).

    ADS  Article  Google Scholar 

  38. Skinner, B. et al. Effect of dielectric response on the quantum capacitance of graphene in a strong magnetic field. Phys. Rev. B 88, 155417 (2013).

    ADS  Article  Google Scholar 

  39. Lee, K. et al. Chemical potential and quantum Hall ferromagnetism in bilayer graphene. Science 345, 58–61 (2014).

    ADS  Article  Google Scholar 

  40. He, J. et al. Spectroscopic evidence for negative electronic compressibility in a quasi-three-dimensional spin–orbit correlated metal. Nat. Mat. 14, 577–582 (2015).

    Article  Google Scholar 

  41. Eisenstein, J. P., Cooper, K. B., Pfeiffer, L. N. & West, K. W. Insulating and fractional quantum Hall states in the first excited Landau level. Phys. Rev. Lett. 88, 076801 (2002).

    ADS  Article  Google Scholar 

  42. Deng, N., Watson, J. D., Rokhinson, L. P., Manfra, M. J. & Csáthy, G. A. Contrasting energy scales of reentrant integer quantum Hall states. Phys. Rev. B. 86, 201301(R) (2012).

    ADS  Article  Google Scholar 

  43. Umansky, V. et al. MBE growth of ultra-low disorder 2DEG with mobility exceeding 35 × 106 cm2/Vs. J. Cryst. Growth 311, 1658–1661 (2009).

    ADS  Article  Google Scholar 

  44. Wixforth, A. & Kotthaus, J. P. Quantum oscillations in the surface-acoustic-wave attenuation caused by a two-dimensional electron system. Phys. Rev. Lett. 56, 2104–2106 (1986).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the German Israeli Foundation (J.H.S. and V.U.), the Collaborative Research Center 183 (F.v.O.), the Priority Programme 1666 (F.v.O.) and grant RO 2247/8-1 (B.R.) of the Deutsche Forschungsgemeinschaft. We thank A. Wixforth and H. Krenner for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

B.F. and J.H.S. conceived and designed the experiment. V.U. developed the sample material. B.F. fabricated the samples, carried out the experiments, and performed the data analysis. All authors contributed to the discussion and interpretation of the results. Y.P., B.R. and F.v.O. performed the theoretical modelling and wrote the Supplementary Methods. B.F. and J.H.S. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to J. H. Smet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 419 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Friess, B., Peng, Y., Rosenow, B. et al. Negative permittivity in bubble and stripe phases. Nature Phys 13, 1124–1129 (2017). https://doi.org/10.1038/nphys4213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4213

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing