Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A high-temperature quantum spin liquid with polaron spins

Abstract

The existence of a quantum spin liquid (QSL) in which quantum fluctuations of spins are sufficiently strong to preclude spin ordering down to zero temperature was originally proposed theoretically more than 40 years ago, but its experimental realization turned out to be very elusive. Here we report on an almost ideal spin liquid state that appears to be realized by atomic-cluster spins on the triangular lattice of a charge-density wave state of 1T-TaS2. In this system, the charge excitations have a well-defined gap of 0.3 eV, while nuclear quadrupole resonance and muon-spin-relaxation experiments reveal that the spins show gapless QSL dynamics and no long-range magnetic order at least down to 70 mK. Canonical T2 power-law temperature dependence of the spin relaxation dynamics characteristic of a QSL is observed from 200 K to Tf = 55 K. Below this temperature, we observe a new gapless state with reduced density of spin excitations and high degree of local disorder signifying new quantum spin order emerging from the QSL.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: μ+SR rules out any long-range magnetic order down to 70 mK.
Figure 2: 181Ta NQR spectrum reveals the symmetry and the structure of deformations in the Star-of-David Ta cluster.
Figure 3: 181Ta relaxation rates probe the quantum spin liquid.
Figure 4: The low-temperature state of 1T-TaS2.

Similar content being viewed by others

References

  1. Anderson, P. W. Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973).

    Article  Google Scholar 

  2. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    Article  ADS  Google Scholar 

  3. Shen, Y. et al. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate. Nature 540, 559–562 (2016).

    Article  ADS  Google Scholar 

  4. Paddison, J. A. M. et al. Continuous excitations of the triangular-lattice quantum spin liquid YbMgGaO4 . Nat. Phys. 13, 117–122 (2017).

    Article  Google Scholar 

  5. Itou, T., Oyamada, A., Maegawa, S. & Kato, R. Instability of a quantum spin liquid in an organic triangular-lattice antiferromagnet. Nat. Phys. 6, 673–676 (2010).

    Article  Google Scholar 

  6. Pratt, F. L. et al. Magnetic and non-magnetic phases of a quantum spin liquid. Nature 471, 612–616 (2011).

    Article  ADS  Google Scholar 

  7. Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 23, 213001 (2011).

    Article  ADS  Google Scholar 

  8. Huse, D. A. & Elser, V. Simple variational wave functions for two-dimensional Heisenberg spin-1/2 antiferromagnets. Phys. Rev. Lett. 60, 2531–2534 (1988).

    Article  ADS  Google Scholar 

  9. White, S. R. & Chernyshev, A. L. Neél order in square and triangular lattice Heisenberg models. Phys. Rev. Lett. 99, 127004 (2007).

    Article  ADS  Google Scholar 

  10. Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    Article  ADS  Google Scholar 

  11. Yoshida, M., Suzuki, R., Zhang, Y., Nakano, M. & Iwasa, Y. Memristive phase switching in two-dimensional 1T-TaS2 crystals. Sci. Adv. 1, e1500606 (2015).

    Article  ADS  Google Scholar 

  12. Vaskivskyi, I. et al. Fast electronic resistance switching involving hidden charge density wave states. Nat. Commun. 7, 11442 (2016).

    Article  ADS  Google Scholar 

  13. Hellmann, S. et al. Time-domain classification of charge-density-wave insulators. Nat. Commun. 3, 1069 (2012).

    Article  ADS  Google Scholar 

  14. Fazekas, P. & Tosatti, E. Electrical, structural and magnetic properties of pure and doped 1T-TaS2 . Philos. Mag. B 39, 229–244 (1979).

    Article  ADS  Google Scholar 

  15. Perfetti, L., Gloor, T. A., Mila, F., Berger, H. & Grioni, M. Unexpected periodicity in the quasi-two-dimensional Mott insulator 1T-TaS2 revealed by angle-resolved photoemission. Phys. Rev. B 71, 153101 (2005).

    Article  ADS  Google Scholar 

  16. Gasparov, L. V. et al. Phonon anomaly at the charge ordering transition in 1T-TaS2 . Phys. Rev. B 66, 094301 (2002).

    Article  ADS  Google Scholar 

  17. Ma, L. et al. A metallic mosaic phase and the origin of Mott-insulating state in 1T-TaS2 . Nat. Commun. 7, 10956 (2016).

    Article  ADS  Google Scholar 

  18. Cho, D. et al. Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS2 . Nat. Commun. 7, 10453 (2016).

    Article  ADS  Google Scholar 

  19. Svetin, D., Vaskivskyi, I., Brazovskii, S. & Mihailovič, D. Three-dimensional resistivity switching between correlated electronic states in 1T-TaS2 . Sci. Rep. 7, 46048 (2017).

    Article  ADS  Google Scholar 

  20. Lee, S.-S. & Lee, P. A. U(1) gauge theory of the Hubbard model: spin liquid states and possible application to κ − (BEDT − TTF)2Cu2(CN)3 . Phys. Rev. Lett. 95, 036403 (2005).

    Article  ADS  Google Scholar 

  21. Motrunich, O. I. Variational study of triangular lattice spin-1/2 model with ring exchanges and spin liquid state in κ − (ET)2Cu2(CN)3 . Phys. Rev. B 72, 045105 (2005).

    Article  ADS  Google Scholar 

  22. Yaouanc, A. & de Rotier, P. D. Muon Spin Rotation, Relaxation, and Resonance (Oxford Univ. Press, 2010).

    Google Scholar 

  23. Naito, M., Nishihara, H. & Tanaka, S. Nuclear quadrupole resonance in the charge density wave state of 1T-TaS2 . J. Phys. Soc. Jpn 53, 1610–1613 (1984).

    Article  ADS  Google Scholar 

  24. Naito, M., Nishihara, H. & Tanaka, S. Nuclear magnetic resonance and nuclear quadrupole resonance study of 181Ta in the commensurate charge density wave state of 1T-TaS2 . J. Phys. Soc. Jpn 55, 2410–2421 (1986).

    Article  ADS  Google Scholar 

  25. Torgeson, D. R. & Borsa, F. Temperature dependence of the electric field gradient in a quasi-two-dimensional metal: NbSe2 . Phys. Rev. Lett. 37, 956–959 (1976).

    Article  ADS  Google Scholar 

  26. Darancet, P., Millis, A. J. & Marianetti, C. A. Three-dimensional metallic and two-dimensional insulating behavior in octahedral tantalum dichalcogenides. Phys. Rev. B 90, 045134 (2014).

    Article  ADS  Google Scholar 

  27. Kaneko, R., Morita, S. & Imada, M. Gapless spin-liquid phase in an extended spin 1/2 triangular Heisenberg model. J. Phys. Soc. Jpn 83, 093707 (2014).

    Article  ADS  Google Scholar 

  28. Walstedt, R. E. Spin-lattice relaxation of nuclear spin echoes in metals. Phys. Rev. Lett. 19, 146–149 (1967).

    Article  ADS  Google Scholar 

  29. Khuntia, P., Kumar, R., Mahajan, A. V., Baenitz, M. & Furukawa, Y. Spin liquid state in the disordered triangular lattice Sc2Ga2CuO7 revealed by NMR. Phys. Rev. B 93, 140408 (2016).

    Article  ADS  Google Scholar 

  30. Shiroka, T. et al. Distribution of NMR relaxations in a random Heisenberg chain. Phys. Rev. Lett. 106, 137202 (2011).

    Article  ADS  Google Scholar 

  31. Fisher, D. S. Random antiferromagnetic quantum spin chains. Phys. Rev. B 50, 3799–3821 (1994).

    Article  ADS  Google Scholar 

  32. Klanjšek, M. et al. Controlling Luttinger liquid physics in spin ladders under a magnetic field. Phys. Rev. Lett. 101, 137207 (2008).

    Article  ADS  Google Scholar 

  33. Klanjšek, M. et al. Phonon-modulated magnetic interactions and spin Tomonaga-Luttinger liquid in the p-orbital antiferromagnet CsO2 . Phys. Rev. Lett. 115, 057205 (2015).

    Article  ADS  Google Scholar 

  34. Uchida, S., Tanabe, K. & Tanaka, S. Nonlinear conduction in two-dimensional CDW system: 1T-TaS2 . Solid State Commun. 27, 637 (1978).

    Article  ADS  Google Scholar 

  35. Bain, G. A. & Berry, J. F. Diamagnetic corrections and Pascal’s constants. J. Chem. Educ. 85, 532–536 (2008).

    Article  Google Scholar 

  36. DiSalvo, F. J. & Waszczak, J. V. Paramagnetic moments and localization in 1T-TaS2 . Phys. Rev. B 22, 4241–4246 (1980).

    Article  ADS  Google Scholar 

  37. Ganal, P., Butz, T., Lerf, A., Naito, M. & Nishiharad, H. The 181Ta nuclear quadrupole interaction in the charge density wave phases of 1T-TaS2 . Z. Nat. forsch. 45a, 439–444 (1990).

    ADS  Google Scholar 

  38. Chepin, J. & Ross, J. H. Magnetic spin-lattice relaxation in nuclear quadrupole resonance: the eta not=0 case. J. Phys. Condens. Matter 3, 8103–8112 (1991).

    Article  ADS  Google Scholar 

  39. Abragam, A. Principles of Nuclear Magnetism (Oxford Univ. Press, 2011).

    Google Scholar 

  40. Wilson, J., Salvo, F. D. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge fruitful discussions with P. Carretta. The authors also acknowledge the contribution of P. Šutar in sample preparation and structural characterization. D.A. acknowledges the financial support by the Slovenian Research Agency, grant No. N1-0052; D.M. acknowledges funding by the ERC AdG Trajectory.

Author information

Authors and Affiliations

Authors

Contributions

D.A., D.M. and P.P. conceived and designed the project and directed and coordinated the research. M.K., A.Z. and P.K.B. performed the μ+SR experiments and analysed the data. M.K. and A.Z. carried out NQR measurements and analysed the data. Z.J. measured spin susceptibility and together with D.A. analysed the data. All authors discussed the results. D.A. wrote the paper with input from all authors.

Corresponding author

Correspondence to Denis Arčon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 581 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klanjšek, M., Zorko, A., Žitko, R. et al. A high-temperature quantum spin liquid with polaron spins. Nature Phys 13, 1130–1134 (2017). https://doi.org/10.1038/nphys4212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing