Radiofrequency-dressed-state potentials for neutral atoms

Abstract

Potentials for atoms can be created by external fields acting on properties such as magnetic moment, charge, polarizability, or by oscillating fields that couple internal states. The most prominent realization of the latter is the optical dipole potential formed by coupling ground and electronically excited states of an atom with light. Here, we present an extensive experimental analysis of potentials derived from radiofrequency (RF) coupling of electronic ground states. The coupling is magnetic and the vector character allows the design of versatile microscopic state-dependent potential landscapes. Compared with standard magnetic trapping, we find no additional heating or (collisional) loss up to densities of 1015 atoms cm−3. We demonstrate robust evaporative cooling in RF potentials, which allows easy production of Bose–Einstein condensates in complex potentials. Altogether, this makes RF dressing a new powerful tool for manipulating ultracold atoms complementary to magnetic trapping and optical dipole potentials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Atom-chip setup for RF potentials.
Figure 2: Orientation of the double-well potential as a function of the plane of polarization in the case of a linearly polarized RF field.
Figure 3: State-dependent potentials for Rb in the F=2,mF=2 state created with (nearly) circularly polarized RF fields.
Figure 4: Comparing double-well potentials created with static fields and RF dressing based on the same structure size and distance to the chip.
Figure 5: Comparison of independent and coherently split BECs.

References

  1. 1

    Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom-Photon Interactions (Wiley, New York, 1992).

  2. 2

    Grimm, R., Weidemüller, M. & Ovchinnikov, Y. B. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).

  3. 3

    Muskat, E., Dubbers, D. & Schärpf, O. Dressed neutrons. Phys. Rev. Lett. 58, 2047–2050 (1987).

  4. 4

    Agosta, C. C., Silvera, I. F., Stoof, H. T. C & Verhaar, B. J. Trapping of neutral atoms with resonant microwave radiation. Phys. Rev. Lett. 62, 2361–2364 (1989).

  5. 5

    Spreeuw, R. J. C et al. Demonstration of neutral atom trapping with microwaves. Phys. Rev. Lett. 72, 3162–3165 (1994).

  6. 6

    Zobay, O. & Garraway, B. M. Two-dimensional atom trapping in field-induced adiabatic potentials. Phys. Rev. Lett. 86, 1195–1198 (2001).

  7. 7

    Colombe, Y. et al. Ultracold atoms confined in rf-induced two-dimensional trapping potentials. Europhys. Lett. 67, 593–599 (2004).

  8. 8

    Schumm, T. et al. Matter-wave interferometry in a double well on an atom chip. Nature Phys. 1, 57–62 (2005).

  9. 9

    Lesanovsky, I. et al. Adiabatic radio frequency potentials for the coherent manipulation of matter waves. Phys. Rev. A 73, 033619 (2006).

  10. 10

    Folman, R., Krüger, P., Schmiedmayer, J., Denschlag, J. & Henkel, C. Microscopic atom optics: from wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).

  11. 11

    Petrov, D. S., Shlyapnikov, G. V. & Walraven, J. T. M. Regimes of quantum degeneracy in trapped 1d gases. Phys. Rev. Lett. 85, 3745–3749 (2000).

  12. 12

    Menotti, C. & Stringari, S. Collective oscillations of a one-dimensional trapped Bose-Einstein gas. Phys. Rev. A 66, 043610 (2002).

  13. 13

    Dettmer, S. et al. Observation of phase fluctuations in elongated Bose-Einstein condensates. Phys. Rev. Lett. 87, 160406 (2001).

  14. 14

    Krüger, P. et al. Trapping and manipulating neutral atoms with electrostatic fields. Phys. Rev. Lett. 91, 233201 (2003).

  15. 15

    Calarco, T. et al. Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps. Phys. Rev. A 61, 022304 (2000).

  16. 16

    Cassettari, D., Hessmo, B., Folman, R., Maier, T. & Schmiedmayer, J. Beam splitter for guided atoms. Phys. Rev. Lett. 85, 5483–5487 (2000).

  17. 17

    Hinds, E. A., Vale, C. J. & Boshier, M. G. Two-wire waveguide and interferometer for cold atoms. Phys. Rev. Lett. 86, 1462–1465 (2001).

  18. 18

    Hänsel, W., Reichel, J., Hommelhoff, P. & Hänsch, T. W. Trapped-atom interferometer in a magnetic microtrap. Phys. Rev. A 64, 063607 (2001).

  19. 19

    Stickney, J. & Zozulya, A. Influence of nonadiabaticity and nonlinearity on the operation of cold-atom beam splitters. Phys. Rev. A 68, 013611 (2003).

  20. 20

    Shin, Y. et al. Interference of Bose-Einstein condensates split with an atom chip. Phys. Rev. A 72, 021604 (2005).

  21. 21

    Esteve, J. et al. Realizing a stable magnetic double-well potential on an atom chip. Eur. Phys. J. D 35, 141–146 (2005).

  22. 22

    Davis, J. D. 2d magnetic traps for ultra-cold atoms: a simple theory using complex numbers. Eur. Phys. J. D 18, 27–36 (2002).

  23. 23

    Lesanovsky, I., Hofferberth, S., Schmiedmayer, J. & Schmelcher, P. Manipulation of ultracold atoms in dressed adiabatic rf-potentials. Preprint at <http://arxiv.org/abs/physics/0606165> (2006).

  24. 24

    Moerdijk, A. J. & Verhaar, B. J. Collisional two- and three-body decay rates of dilute quantum gases at ultralow temperatures. Phys. Rev. A 53, R19–R22 (1996).

  25. 25

    Julienne, P. S., Mies, F. H., Tiesinga, E. & Williams, C. J. Collisional stability of double Bose condensates. Phys. Rev. Lett. 78, 1880–1883 (1997).

  26. 26

    Moerdijk, A. J., Verhaar, B. J. & Nagtegaal, T. M. Collisions of dressed ground-state atoms. Phys. Rev. A 53, 4343–4351 (1996).

  27. 27

    Suominen, K.-A., Tiesinga, E. & Julienne, P. S. Nonadiabatic dynamics in evaporative cooling of trapped atoms by a radio-frequency field. Phys. Rev. A 58, 3983–3992 (1998).

  28. 28

    White, M., Gao, H., Pasienski, M. & DeMarco, B. Bose-Einstein condensates in rf-dressed adiabatic potentials. Preprint at <http://arxiv.org/abs/cond-mat/0605393> (2006).

  29. 29

    Castin, Y. & Dalibard, J. Relative phase of two Bose-Einstein condensates. Phys. Rev. A 55, 4330–4337 (1997).

  30. 30

    Andrews, M. R. et al. Observation of interference between two Bose condensates. Science 275, 637–641 (1997).

  31. 31

    Villain, P. et al. Quantum dynamics of the phase of a Bose-Einstein condensate. J. Mod. Opt. 44, 1775–1800 (1997).

  32. 32

    Courteille, P. W. et al. Highly versatile atomic micro traps generated by multifrequency magnetic field modulation. J. Phys. B 39, 1055–1064 (2006).

  33. 33

    Wildermuth, S. et al. Optimized magneto-optical trap for experiments with ultracold atoms near surfaces. Phys. Rev. A 69, 030901(R) (2004).

  34. 34

    Wildermuth, S. et al. Microscopic magnetic-field imaging. Nature 435, 440 (2005).

  35. 35

    Krüger, P. et al. Disorder potentials near lithographically fabricated atom chips. Preprint at <http://arxiv.org/abs/cond-mat/0504686> (2005).

Download references

Acknowledgements

We would like to thank Thorsten Schumm for stimulating discussions and we are grateful to Peter Krüger for critical reading of the manuscript. The atom chip used in this experiment was fabricated at the Weizman Institut of Science by S. Groth. We acknowledge financial support from the European Union, through the contracts IST-2001-38863 (ACQP), MRTN-CT-2003-505032 (Atom Chips), Integrated Project FET/QIPC ‘SCALA’, and the Deutsche Forschungsgemeinschaft, contract number SCHM 1599/1-1. I.L. acknowledges support from the European Community and its 6th Community Frame (program of Scholarships of Distinction ‘Marie Curie’).

Author information

Correspondence to S. Hofferberth or J. Schmiedmayer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hofferberth, S., Lesanovsky, I., Fischer, B. et al. Radiofrequency-dressed-state potentials for neutral atoms. Nature Phys 2, 710–716 (2006). https://doi.org/10.1038/nphys420

Download citation

Further reading