Thermodynamic evidence for a nematic phase transition at the onset of the pseudogap in YBa2Cu3Oy

Abstract

A long-standing controversial issue in the quest to understand the superconductivity in cuprates is the nature of the enigmatic pseudogap region of the phase diagram1. Especially important is whether the pseudogap state is a distinct thermodynamic phase characterized by broken symmetries below the onset temperature T. Here we report torque-magnetometry measurements of anisotropic susceptibility within the ab planes in orthorhombic YBa2Cu3Oy with exceptionally high precision. The in-plane anisotropy displays a significant increase with a distinct kink at the pseudogap onset temperature T, showing a remarkable scaling behaviour with respect to T/T in a wide doping range. Our systematic analysis reveals that the rotational symmetry breaking sets in at T in the limit where the effect of orthorhombicity is eliminated. These results provide thermodynamic evidence that the pseudogap onset is associated with a second-order nematic phase transition, which differs from the recently reported charge-density-wave transition that accompanies translational symmetry breaking2,3,4,5,6,7,8,9,10.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: In-plane torque magnetometry in YBCO single crystals.
Figure 2: In-plane anisotropy of the magnetic susceptibility for underdoped YBCO with different hole doping levels.
Figure 3: Temperature-doping phase diagram of YBCO.
Figure 4: Induced nematicity and the scaling behaviour.

References

  1. 1

    Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

  2. 2

    Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y, Nd)Ba2Cu3O6+x . Science 337, 821–825 (2012).

  3. 3

    Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67 . Nat. Phys. 8, 871–876 (2012).

  4. 4

    Comin, R. et al. Broken translational and rotational symmetry via charge stripe order in underdoped YBa2Cu3O6+y . Science 347, 1335–1339 (2015).

  5. 5

    Forgan, E. M. et al. The microscopic structure of charge density waves in underdoped YBa2Cu3O6.54 revealed by X-ray diffraction. Nat. Commun. 6, 10064 (2015).

  6. 6

    Hücker, M. et al. Competing charge, spin, and superconducting orders in underdoped YBa2Cu3Oy . Phys. Rev. B 90, 054514 (2014).

  7. 7

    Blanco-Canosa, S. et al. Resonant X-ray scattering study of charge-density wave correlations in YBa2Cu3O6+x . Phys. Rev. B 90, 054513 (2014).

  8. 8

    Wu, T. et al. Incipient charge order observed by NMR in the normal state of YBa2Cu3Oy . Nat. Commun. 6, 6438 (2015).

  9. 9

    Jang, H. et al. Ideal charge density wave order in the high-field state of superconducting YBCO. Proc. Natl Acad. Sci. USA 113, 14645–14650 (2016).

  10. 10

    Sebastian, S. E. & Proust, C. Quantum oscillations in hole-doped cuprates. Annu. Rev. Condens. Mater. Phys. 6, 411–430 (2015).

  11. 11

    Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998).

  12. 12

    Vojta, M. Lattice symmetry breaking in cuprate superconductors: stripes, nematics, and superconductivity. Adv. Phys. 58, 699–820 (2009).

  13. 13

    Ando, Y., Segawa, K., Komiya, S. & Lavrov, A. N. Electrical resistivity anisotropy from self-organized one dimensionality in high-temperature superconductors. Phys. Rev. Lett. 88, 137005 (2002).

  14. 14

    Hinkov, V. et al. Electronic liquid crystal state in the high-temperature superconductor YBa2Cu3O6.45 . Science 319, 597–600 (2008).

  15. 15

    Scalapino, D. J. & White, S. R. Stripe structures in the t-t′-J model. Physica C 481, 146–152 (2012).

  16. 16

    Wang, Y. & Chubukov, A. Charge-density-wave order with momentum (2Q, 0) and (0,2Q) within the spin-fermion model: continuous and discrete symmetry breaking, preemptive composite order, and relation to pseudogap in hole-doped cuprates. Phys. Rev. B 90, 035149 (2014).

  17. 17

    Yamakawa, Y. & Kontani, H. Spin-fluctuation-driven nematic charge-density wave in cuprate superconductors: impact of Aslamazov–Larkin vertex corrections. Phys. Rev. Lett. 114, 257001 (2015).

  18. 18

    Schütt, M. & Fernandes, R. M. Antagonistic in-plane resistivity anisotropies from competing fluctuations in underdoped cuprates. Phys. Rev. Lett. 115, 027005 (2015).

  19. 19

    Kohsaka, Y. et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380–1385 (2007).

  20. 20

    Lawler, M. J. et al. Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature 466, 347–351 (2010).

  21. 21

    Parker, C. V. et al. Fluctuating stripes at the onset of the pseudogap in the high-Tc superconductor Bi2Sr2CaCu2O8+x . Nature 468, 677–680 (2010).

  22. 22

    Daou, R. et al. Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor. Nature 463, 519–522 (2010).

  23. 23

    Nie, L., Tarjus, G. & Kivelson, S. Quenched disorder and vestigial nematicity in the pseudogap regime of the cuprates. Proc. Natl Acad. Sci. USA 111, 7980–7985 (2014).

  24. 24

    Patel, A., Chowdhury, D., Allais, A. & Sachdev, S. Confinement transition to density wave order in metallic doped spin liquids. Phys. Rev. B 93, 165139 (2016).

  25. 25

    Shekhter, A. et al. Bounding the pseudogap with a line of phase transitions in YBa2Cu3O6+δ . Nature 498, 75–77 (2013).

  26. 26

    Cooper, J. R., Loram, J. W., Kokanović, I., Storey, J. G. & Tallon, J. L. Pseudogap in YBa2Cu3O6+δ is not bounded by a line of phase transitions: thermodynamic evidence. Phys. Rev. B 89, 201104(R) (2014).

  27. 27

    Fauqué, B. et al. Magnetic order in the pseudogap phase of high-Tc superconductors. Phys. Rev. Lett. 96, 197001 (2006).

  28. 28

    Mangin-Thro, L. et al. Characterization of the intra-unit-cell magnetic order in Bi2Sr2CaCu2O8+δ . Phys. Rev. B 89, 094523 (2014).

  29. 29

    Xia, J. et al. Polar Kerr-effect measurements of the high-temperature YBa2Cu3O6+x superconductor: evidence for broken symmetry near the pseudogap temperature. Phys. Rev. Lett. 100, 127002 (2008).

  30. 30

    Cyr-Choiniére, O. et al. Two types of nematicity in the phase diagram of the cuprate superconductor YBa2Cu3Oy . Phys. Rev. B 92, 224502 (2015).

  31. 31

    Hashimoto, M., Vishik, I. M., He, R.-H., Devereaux, T. P. & Shen, Z.-X. Energy gaps in high-transition-temperature cuprate superconductors. Nat. Phys. 10, 483–495 (2014).

  32. 32

    Tallon, J. L. & Loram, J. W. The doping dependence of T - what is the real high-Tc phase diagram? Physica C 349, 53–68 (2001).

  33. 33

    Badoux, S. et al. Change of carrier density at the pseudogap critical point of a cuprate superconductor. Nature 531, 210–214 (2016).

  34. 34

    Benhabib, S. et al. Collapse of the normal-state pseudogap at a Lifshitz transition in the Bi2Sr2CaCu2O8+δ cuprate superconductor. Phys. Rev. Lett. 114, 147001 (2015).

  35. 35

    Naito, T., Nishizaki, T., Watanabe, Y. & Kobayashi, N. in Advances in Superconductivity IX (eds Nakajima, S. & Murakami, M.) 601–604 (Springer, 1997).

  36. 36

    Nishizaki, T., Takahashi, Y. & Kobayashi, N. Phase diagram of interlayer Josephson vortices in underdoped YBa2Cu3Oy . Physica C 468, 664–668 (2008).

  37. 37

    Liang, R., Bonn, D. A. & Hardy, W. N. Evaluation of CuO2 plane hole doping in YBa2Cu3O6+x single crystals. Phys. Rev. B 73, 180505(R) (2006).

  38. 38

    Hinkov, V. et al. Two-dimensional geometry of spin excitations in the high-transition-temperature superconductor YBa2Cu3O6+x . Nature 430, 650–653 (2004).

  39. 39

    Nishizaki, T. & Kobayashi, N. Vortex-matter phase diagram as a function of oxygen deficiency in untwinned in YBa2Cu3Oy . J. Low Temp. Phys. 117, 1375–1379 (1999).

  40. 40

    Nishizaki, T. & Kobayashi, N. Vortex-matter phase diagram in YBa2Cu3Oy . Supercond. Sci. Technol. 13, 1–11 (2000).

  41. 41

    Nishizaki, T., Shibata, K., Sasaki, T. & Kobayashi, N. New equilibrium phase diagram of YBa2Cu3Oy under high magnetic fields. Physica C 341–348, 957–960 (2000).

  42. 42

    Okazaki, R. et al. Rotational symmetry breaking in the hidden-order phase of URu2Si2 . Science 331, 439–442 (2011).

  43. 43

    Kasahara, S. et al. Electronic nematicity above the structural and superconducting transition in BaFe2(As1−xPx)2 . Nature 486, 382–385 (2012).

  44. 44

    Watanabe, D. et al. Novel Pauli-paramagnetic quantum phase in a Mott insulator. Nat. Commun. 3, 1090 (2012).

  45. 45

    Kasahara, S. et al. Giant superconducting fluctuations in the compensated semimetal FeSe at the BCS-BEC crossover. Nat. Commun. 7, 12146 (2016).

  46. 46

    Watanabe, T., Fujii, T. & Matsuda, A. Pseudogap in Bi2Sr2CaCu2O8+δ studied by measuring anisotropic susceptibilities and out-of-plane transport. Phys. Rev. Lett. 84, 5848–5851 (2000).

  47. 47

    Wang, Y. et al. Field-enhanced diamagnetism in the pseudogap state of the cuprate Bi2Sr2CaCu2O8 superconductor in an intense magnetic field. Phys. Rev. Lett. 95, 247002 (2005).

  48. 48

    Leridon, B., Monod, P., Colson, D. & Forget, A. Thermodynamic signature of a phase transition in the pseudogap phase of YBa2Cu3Ox high-Tc superconductor. Euro. Phys. Lett. 87, 17011 (2009).

Download references

Acknowledgements

We thank A. Carrington, R. M. Fernandes, T. Hanaguri, N. Harrison, S. M. Hayden, M.-H. Julien, S. Kivelson, H. Kontani, C. Putzke, T. M. Rice, S. Sachdev, L. Taillefer, T. Tohyama, H. Yamase and J. Zaanen for fruitful discussions, and M. Ishikawa and H. Yamochi for experimental support. This work was supported by Grants-in-Aid for Scientific Research (KAKENHI) (Nos. 25220710, 15H02106, 15H03688, 16K05460, 16K13837) and on Innovative Areas ‘Topological Material Science’ (No. 15H05852) from Japan Society for the Promotion of Science (JSPS). The characterization of YBCO single crystals was partly performed at Advanced Instruments Center at Kyushu Sangyo University. E.-G.M. acknowledges the financial supports from the POSCO Science Fellowship of POSCO TJ Park Foundation and NRF of Korea under Grant No. 2017R1C1B2009176.

Author information

T.N., T.L., J.P. and B.K. prepared the high-quality single-crystalline samples. Y.S., H.M. and S.K. performed the magnetic torque measurements. Y.S., S.K., E.-G.M. and Y.M. analysed the data. S.K., E.-G.M., Y.K., T.S., B.K. and Y.M. discussed and interpreted the results and prepared the manuscript.

Correspondence to Y. Matsuda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 418 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sato, Y., Kasahara, S., Murayama, H. et al. Thermodynamic evidence for a nematic phase transition at the onset of the pseudogap in YBa2Cu3Oy. Nature Phys 13, 1074–1078 (2017). https://doi.org/10.1038/nphys4205

Download citation

Further reading