Coupling the Leidenfrost effect and elastic deformations to power sustained bouncing

Article metrics


The Leidenfrost effect occurs when an object near a hot surface vaporizes rapidly enough to lift itself up and hover1,2. Although well understood for liquids1,2,3,4,5,6,7,8,9,10,11,12,13,14 and stiff sublimable solids15,16,17,18, nothing is known about the effect with materials whose stiffness lies between these extremes. Here we introduce a new phenomenon that occurs with vaporizable soft solids—the elastic Leidenfrost effect. By dropping hydrogel spheres onto hot surfaces we find that, rather than hovering, they energetically bounce several times their diameter for minutes at a time. With high-speed video during a single impact, we uncover high-frequency microscopic gap dynamics at the sphere/substrate interface. We show how these otherwise-hidden agitations constitute work cycles that harvest mechanical energy from the vapour and sustain the bouncing. Our findings suggest a new strategy for injecting mechanical energy into a widely used class of soft materials, with potential relevance to fields such as active matter, soft robotics and microfluidics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Sustained bouncing of hydrogel spheres on a hot surface.
Figure 2: Energy injection and mass loss.
Figure 3: High-frequency, microscopic gap oscillations at the interface.
Figure 4: Coupling the Leidenfrost effect to elastic deformations.


  1. 1

    Leidenfrost, J. G. De Aquae Communis Nonnullis Qualitatibus Tractatus (Duisburg, 1756).

  2. 2

    Quéré, D. Leidenfrost dynamics. Annu. Rev. Fluid Mech. 45, 197–215 (2013).

  3. 3

    Lagubeau, G., Le Merrer, M., Clanet, C. & Quéré, D. Leidenfrost on a ratchet. Nat. Phys. 7, 395–398 (2011).

  4. 4

    Vakarelski, I. U., Patankar, N. A., Marston, J. O., Chan, D. Y. C. & Thoroddsen, S. T. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274–277 (2012).

  5. 5

    Biance, A.-L., Clanet, C. & Quéré, D. Leidenfrost drops. Phys. Fluids 15, 1632–1637 (2003).

  6. 6

    Vakarelski, I. U., Marston, J. O., Chan, D. Y. C. & Thoroddsen, S. T. Drag reduction by Leidenfrost vapor layers. Phys. Rev. Lett. 106, 214501 (2011).

  7. 7

    Linke, H. et al. Self-propelled Leidenfrost droplets. Phys. Rev. Lett. 96, 154502 (2006).

  8. 8

    Bertola, V. An experimental study of bouncing Leidenfrost drops: comparison between Newtonian and viscoelastic liquids. Int. J. Heat Mass Transfer 52, 1786–1793 (2009).

  9. 9

    van Limbeek, M. A. J. et al. Vapour cooling of poorly conducting hot substrates increases the dynamic Leidenfrost temperature. Int. J. Heat Mass Transfer 97, 101–109 (2016).

  10. 10

    Shirota, M., van Limbeek, M., Sun, C., Prosperetti, A. & Lohse, D. Dynamic Leidenfrost effect: relevant time and length scales. Phys. Rev. Lett. 116, 064501–064505 (2016).

  11. 11

    Cousins, T. R., Goldstein, R. E., Jaworski, J. W. & Pesci, A. I. A ratchet trap for Leidenfrost drops. J. Fluid Mech. 696, 215–227 (2012).

  12. 12

    Burton, J. C., Sharpe, A. L., van der Veen, R. C. A., Franco, A. & Nagel, S. R. Geometry of the vapor layer under a Leidenfrost drop. Phys. Rev. Lett. 109, 074301 (2012).

  13. 13

    Ma, X., Liétor-Santos, J.-J. & Burton, J. C. The many faces of a Leidenfrost drop. Phys. Fluids 27, 091109 (2015).

  14. 14

    Biance, A.-L., Chevy, F., Clanet, C., Lagubeau, G. & Quéré, D. On the elasticity of an inertial liquid shock. J. Fluid Mech. 554, 47–66 (2006).

  15. 15

    Wells, G. G., Ledesma-Aguilar, R., McHale, G. & Sefiane, K. A sublimation heat engine. Nat. Commun. 6, 1–7 (2015).

  16. 16

    Baier, T., Dupeux, G., Herbert, S., Hardt, S. & Quéré, D. Propulsion mechanisms for Leidenfrost solids on ratchets. Phys. Rev. E 87, 021001(R) (2013).

  17. 17

    Dupeux, G. et al. Self-propelling uneven Leidenfrost solids. Phys. Fluids 25, 051704 (2013).

  18. 18

    Hashmi, A. et al. Leidenfrost levitation: beyond droplets. Sci. Rep. 2, 1–4 (2012).

  19. 19

    Van Dam, H. Physics of nuclear reactor safety. Rep. Prog. Phys. 11, 2025–2077 (1992).

  20. 20

    Tran, T., Staat, H. J. J., Prosperetti, A., Sun, C. & Lohse, D. Drop impact on superheated surfaces. Phys. Rev. Lett. 108, 036101 (2012).

  21. 21

    Deseigne, J., Dauchot, O. & Chaté, H. Collective motion of vibrated polar disks. Phys. Rev. Lett. 105, 098001 (2010).

  22. 22

    Giomi, L., Hawley-Weld, N. & Mahadevan, L. Swarming, swirling and stasis in sequestered bristle-bots. Proc. R. Soc. A 469, 20120637 (2012).

  23. 23

    Falcon, E., Laroche, C., Fauve, S. & Coste, C. Behavior of one inelastic ball bouncing repeatedly off the ground. Eur. Phys. J. B 3, 45–57 (1998).

  24. 24

    Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

  25. 25

    Cabodi, M. et al. A microfluidic biomaterial. J. Am. Chem. Soc. 127, 13788–13789 (2005).

  26. 26

    Beebe, D. J., Moore, J. S., Bauer, J. M., Yu, Q. & Liu, R. H. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588–590 (2000).

  27. 27

    Workamp, M., Alaie, S. & Dijksman, J. A. Coaxial air flow device for the production of millimeter-sized spherical hydrogel particles. Rev. Sci. Instrum. 87, 125113 (2016).

  28. 28

    Hong, S. et al. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 27, 4035–4040 (2015).

  29. 29

    Yuk, H., Zhang, T., Lin, S., Parada, G. A. & Zhao, X. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15, 190–196 (2016).

  30. 30

    Sun, J.-Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

  31. 31

    Brodu, N., Dijksman, J. A. & Behringer, R. P. Spanning the scales of granular materials through microscopic force imaging. Nat. Commun. 6, 1–6 (2015).

  32. 32

    Müller, P., Heckel, M., Sack, A. & Pöschel, T. Complex velocity dependence of the coefficient of restitution of a bouncing ball. Phys. Rev. Lett. 110, 254301 (2013).

  33. 33

    Montaine, M., Heckel, M., Kruelle, C., Schwager, T. & Pöschel, T. Coefficient of restitution as a fluctuating quantity. Phys. Rev. E 84, 041306 (2011).

  34. 34

    Stensgaard, I. & Lægsgaard, E. Listening to the coefficient of restitution-revisited. Am. J. Phys. 69, 301–306 (2001).

  35. 35

    Ramírez, R., Pöschel, T., Brilliantov, N. V. & Schwager, T. Coefficient of restitution of colliding viscoelastic spheres. Phys. Rev. E 60, 4465–4470 (1999).

  36. 36

    Murakami, R. & Hayakawa, H. Effect of elastic vibrations on normal head-on collisions of isothermal spheres. Phys. Rev. E 89, 012205 (2014).

  37. 37

    Ogden, R. W. Non Linear Elastic Deformations (Dover, 1997).

  38. 38

    Basu, A. & Singh, R. N. Comparison of Darcy’s Law and Fick’s law of diffusion to determine the field parameters related to methane gas drainage in coal seams. Int. Mine Wat. Assoc. Proc. 1, 59–70 (1994).

Download references


We thank I. Panchenko for producing the video that inspired this project. We acknowledge K. Harth for a critical reading of the manuscript. We thank E. Clement, J. Dijksman, D. Durian, H. Jaeger, D. Lohse, L. Lubbers and R. Sijbesma for productive conversations. M. van Deen, D. Ursem, R. Struik and J. Mesman provided critical technical support. A.S. acknowledges funding from the Delta Institute for Theoretical Physics and the hospitality of the IBS Center for Theoretical Physics of Complex Systems, Daejeon, South Korea. We acknowledge funding from the Netherlands Organisation for Scientific Research through grants VICI No. NWO-680-47-609 (M.v.H. and S.R.W.), VENI No. NWO-680-47-445 (C.C.) and VENI No. NWO-680-47-453 (S.R.W.).

Author information

S.R.W. conceived of the project. S.R.W. and A.Z. performed the experiments. S.R.W., M.v.H., C.C. and A.S. developed the model and S.R.W. implemented it numerically. All authors contributed to the writing of the manuscript.

Correspondence to Scott R. Waitukaitis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1016 kb)

Supplementary movie

Supplementary movie 1 (MOV 4867 kb)

Supplementary movie

Supplementary movie 2 (MOV 3349 kb)

Supplementary movie

Supplementary movie 3 (MOV 2757 kb)

Supplementary movie

Supplementary movie 4 (MOV 1789 kb)

Supplementary movie

Supplementary movie 5 (MOV 5558 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Waitukaitis, S., Zuiderwijk, A., Souslov, A. et al. Coupling the Leidenfrost effect and elastic deformations to power sustained bouncing. Nature Phys 13, 1095–1099 (2017) doi:10.1038/nphys4194

Download citation

Further reading