Letter | Published:

Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass

Nature Physics volume 13, pages 938942 (2017) | Download Citation

Abstract

Traditional gravity measurements use bulk masses to both source and probe gravitational fields1. Matter-wave interferometers enable the use of probe masses as small as neutrons2, atoms3 and molecular clusters4, but still require fields generated by masses ranging from hundreds of kilograms5,6 to the entire Earth. Shrinking the sources would enable versatile configurations, improve positioning accuracy, enable tests for beyond-standard-model (‘fifth’) forces, and allow observation of non-classical effects of gravity. Here we detect the gravitational force between freely falling caesium atoms and an in-vacuum, miniature (centimetre-sized, 0.19 kg) source mass using atom interferometry. Sensitivity down to gravitational strength forces accesses the natural scale7 for a wide class of cosmologically motivated scalar field models8,9 of modified gravity and dark energy. We improve the limits on two such models, chameleons9 and symmetrons10,11, by over two orders of magnitude. We expect further tests of dark energy theories, and measurements of Newton’s gravitational constant and the gravitational Aharonov–Bohm effect12.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Tests of the gravitational inverse-square law below the dark-energy length scale. Phys. Rev. Lett. 98, 21101 (2007).

  2. 2.

    , & Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472–1474 (1975).

  3. 3.

    , & Measurement of gravitational acceleration by dropping atoms. Nature 400, 849–852 (1999).

  4. 4.

    , , , & Colloquium: quantum interference of clusters and molecules. Rev. Mod. Phys. 84, 157–173 (2012).

  5. 5.

    , , , & Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510, 518–521 (2014).

  6. 6.

    , , & Atom interferometer measurement of the newtonian constant of gravity. Science 315, 74–77 (2007).

  7. 7.

    et al. The string landscape, black holes and gravity as the weakest force. J. High Energy Phys. 2007, 060 (2007).

  8. 8.

    , & Probing dark energy with atom interferometry. J. Cosmol. Astropart. Phys. 2015, 042 (2015).

  9. 9.

    et al. Atom-interferometry constraints on dark energy. Science 349, 849–851 (2015).

  10. 10.

    , , & Constraining symmetron fields with atom interferometry. J. Cosmol. Astropart. Phys. 2016, 041 (2016).

  11. 11.

    & Atomic interferometry test of dark energy. Phys. Rev. D 94, 104069 (2016).

  12. 12.

    , , , & Force-free gravitational redshift: proposed gravitational Aharonov–Bohm experiment. Phys. Rev. Lett. 108, 230404 (2012).

  13. 13.

    , , , & Local gravity measurement with the combination of atom interferometry and Bloch oscillations. Phys. Rev. A 85, 13639 (2012).

  14. 14.

    et al. Quantum superposition at the half-metre scale. Nature 528, 530–533 (2015).

  15. 15.

    et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter. Phys. Rev. A 88, 43610 (2013).

  16. 16.

    et al. Metrology with atom interferometry: inertial sensors from laboratory to field applications. J. Phys. Conf. Ser. 723, 12049 (2016).

  17. 17.

    et al. A micromechanical proof-of-principle experiment for measuring the gravitational force of milligram masses. Class. Quantum Gravity 33, 125031 (2016).

  18. 18.

    Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

  19. 19.

    et al. Measurements of Ω and Λ from 42 high- redshift supernovae. Astrophys. J. 517, 565–586 (1999).

  20. 20.

    , , & Beyond the cosmological standard model. Phys. Rep. 568, 1–98 (2015).

  21. 21.

    The confrontation between general relativity and experiment. Living Rev. Relat. 17, 4 (2014).

  22. 22.

    et al. Chameleon dark energy and atom interferometry. Phys. Rev. D 94, 44051 (2016).

  23. 23.

    , , , & Detecting dark energy in orbit: the cosmological chameleon. Phys. Rev. D 70, 123518 (2004).

  24. 24.

    & Chameleon fields: awaiting surprises for tests of gravity in space. Phys. Rev. Lett. 93, 171104 (2004).

  25. 25.

    & Environmental dependence of masses and coupling constants. Phys. Rev. D 77, 43524 (2008).

  26. 26.

    , , & Symmetron cosmology. Phys. Rev. D 84, 103521 (2011).

  27. 27.

    Dark energy fifth forces in torsion pendulum experiments. Phys. Rev. D 86, 102003 (2012).

  28. 28.

    et al. Neutron limit on the strongly-coupled chameleon field. Phys. Rev. D 93, 62001 (2016).

  29. 29.

    et al. Gravity resonance spectroscopy constrains dark energy and dark matter scenarios. Phys. Rev. Lett. 112, 151105 (2014).

  30. 30.

    et al. Search for screened interactions associated with dark energy below the 100 μm length scale. Phys. Rev. Lett. 117, 101101 (2016).

  31. 31.

    et al. Atom interferometry in an optical cavity. Phys. Rev. Lett. 114, 100405 (2015).

  32. 32.

    , , & Degenerate Raman sideband cooling of trapped cesium atoms at very high atomic densities. Phys. Rev. Lett. 81, 5768–5771 (1998).

Download references

Acknowledgements

We thank B. Estey for helpful discussions and technical contributions to the apparatus. This material is based upon work supported by the National Science Foundation under CAREER Grant No. PHY-1056620, the David and Lucile Packard Foundation, and National Aeronautics and Space Administration Grants No. 1553641, No. 1531033, and No. 1465360. We also acknowledge collaboration with Honeywell Aerospace under DARPA Contract No. N66001-12-1-4232. P.Haslinger thanks the Austrian Science Fund (FWF): J3680. B.E. and J.K. are supported in part by NSF CAREER Award PHY-1145525, NASA ATP grant NNX11AI95G, and the Charles E. Kaufman Foundation of the Pittsburgh Foundation.

Author information

Author notes

    • Matt Jaffe
    •  & Philipp Haslinger

    These authors contributed equally to this work.

Affiliations

  1. Department of Physics, 366 Le Conte Hall MS 7300, University of California, Berkeley, California 94720, USA

    • Matt Jaffe
    • , Philipp Haslinger
    • , Victoria Xu
    •  & Holger Müller
  2. Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

    • Paul Hamilton
  3. Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

    • Amol Upadhye
  4. Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

    • Benjamin Elder
    •  & Justin Khoury
  5. Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA

    • Holger Müller

Authors

  1. Search for Matt Jaffe in:

  2. Search for Philipp Haslinger in:

  3. Search for Victoria Xu in:

  4. Search for Paul Hamilton in:

  5. Search for Amol Upadhye in:

  6. Search for Benjamin Elder in:

  7. Search for Justin Khoury in:

  8. Search for Holger Müller in:

Contributions

M.J., P.Haslinger, V.X., P.Hamilton and H.M. built the apparatus, took the measurements, and performed the data analysis. B.E. performed numerical simulations of screened fields. A.U., B.E. and J.K. interpreted the measurements in the context of screened fields. All authors contributed to the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Holger Müller.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys4189

Further reading