Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Contact enhancement of locomotion in spreading cell colonies

Abstract

The dispersal of cells from an initially constrained location is a crucial aspect of many physiological phenomena, ranging from morphogenesis to tumour spreading. In such processes, cell–cell interactions may deeply alter the motion of single cells, and in turn the collective dynamics. While contact phenomena like contact inhibition of locomotion are known to come into play at high densities, here we focus on the little explored case of non-cohesive cells at moderate densities. We fully characterize the spreading of micropatterned colonies of Dictyostelium discoideum cells from the complete set of individual trajectories. From data analysis and simulation of an elementary model, we demonstrate that contact interactions act to speed up the early population spreading by promoting individual cells to a state of higher persistence, which constitutes an as-yet unreported contact enhancement of locomotion. Our findings also suggest that the current modelling paradigm of memoryless active particles may need to be extended to account for the history-dependent internal state of motile cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A highly controlled experimental set-up gives full access to colony spreading dynamics at both individual and population scales.
Figure 2: Density-dependent colony spreading.
Figure 3: Local interactions between cells lead to an increase in cell persistence.
Figure 4: Spreading colonies in individual-based models with various interaction rules.

Similar content being viewed by others

References

  1. Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10, 445–457 (2009).

    Google Scholar 

  2. Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003).

    Google Scholar 

  3. Carmona-Fontaine, C. et al. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456, 957–961 (2008).

    ADS  Google Scholar 

  4. Selmeczi, D. et al. Cell motility as random motion: a review. Eur. Phys. J. Spec. Top. 157, 1–15 (2008).

    Google Scholar 

  5. Li, L., Norrelkke, S. F. & Cox, E. C. Persistent cell motion in the absence of external signals: a search strategy for eukaryotic cells. PLoS ONE 3, e2093 (2008).

    ADS  Google Scholar 

  6. Kolmogorov, A., Petrovskii, I. & Piscounov, N. A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem. Math. Mech. 1, 1–25 (1937).

    Google Scholar 

  7. Simpson, M. J. et al. Quantifying the roles of cell motility and cell proliferation in a circular barrier assay. J. R. Soc. Interface 10, 20130007 (2013).

    Google Scholar 

  8. Sengers, B. G., Please, C. P. & Oreffo, R. O. C. Experimental characterization and computational modelling of two-dimensional cell spreading for skeletal regeneration. J. R. Soc. Interface 4, 1107–1117 (2007).

    Google Scholar 

  9. Marel, A. K. et al. Flow and diffusion in channel-guided cell migration. Biophys. J. 107, 1054–1064 (2014).

    ADS  Google Scholar 

  10. Golé, L., Rivière, C., Hayakawa, Y. & Rieu, J. P. A quorum-sensing factor in vegetative Dictyostelium discoideum cells revealed by quantitative migration analysis. PLoS ONE 6, 1–9 (2011).

    Google Scholar 

  11. Phillips, J. & Gomer, R. A secreted protein is an endogenous chemorepellant in Dictyostelium discoideum. Proc. Natl Acad. Sci. USA 109, 10990–10995 (2012).

    ADS  Google Scholar 

  12. Angelini, T. E., Hannezo, E., Trepat, X., Fredberg, J. J. & Weitz, D. A. Cell migration driven by cooperative substrate deformation patterns. Phys. Rev. Lett. 104, 168104 (2010).

    ADS  Google Scholar 

  13. Abercrombie, M. & Heaysman, J. E. Observations on the social behaviour of cells in tissue culture: I. Speed of movement of chick heart fibroblasts in relation to their mutual contacts. Exp. Cell Res. 5, 111–131 (1953).

    Google Scholar 

  14. Stramer, B. A. & Mayor, R. Mechanisms and in vivo functions of contact inhibition of locomotion. Nat. Rev. Mol. Cell Biol. 118, 43–55 (2016).

    Google Scholar 

  15. Dyson, L. & Baker, R. E. The importance of volume exclusion in modelling cellular migration. J. Math. Biol. 71, 679–711 (2014).

    MathSciNet  Google Scholar 

  16. Serra-Picamal, X. et al. Mechanical waves during tissue expansion. Nat. Phys. 8, 628–634 (2012).

    Google Scholar 

  17. Nnetu, K. D., Knorr, M., Strehe, D., Zink, M. & Käs, J. A. Directed persistent motion maintains sheet integrity during multi-cellular spreading and migration. Soft Matter 8, 6913–6921 (2012).

    ADS  Google Scholar 

  18. Yates, C. A., Parker, A. & Baker, R. E. Incorporating pushing in exclusion-process models of cell migration. Phys. Rev. E 91, 052711 (2015).

    Google Scholar 

  19. Sepúlveda, N. et al. Collective cell motion in an epithelial sheet can be quantitatively described by a stochastic interacting particle model. PLoS Comput. Biol. 9, e1002944 (2013).

    MathSciNet  Google Scholar 

  20. Petitjean, L. et al. Velocity fields in a collectively migrating epithelium. Biophys. J. 98, 1790–1800 (2010).

    ADS  Google Scholar 

  21. Tambe, D. T. et al. Collective cell guidance by cooperative intercellular forces. Nat. Mat. 10, 469–475 (2011).

    Google Scholar 

  22. Coburn, L., Cerone, L., Torney, C., Couzin, I. D. & Neufeld, Z. Interactions lead to coherent motion and enhanced chemotaxis of migrating Cells. Phys. Biol. 10, 046002 (2013).

    ADS  Google Scholar 

  23. Duclos, G., Garcia, S., Yevick, H. G. & Silberzan, P. Perfect nematic order in confined monolayers of spindle-shaped cells. Soft Matter 10, 2346–2353 (2014).

    ADS  Google Scholar 

  24. Londono, C. et al. Nonautonomous contact guidance signaling during collective cell migration. Proc. Natl Acad. Sci. USA 111, 1807–1812 (2014).

    ADS  Google Scholar 

  25. Angelini, T. E. et al. Glass-like dynamics of collective cell migration. Proc. Natl Acad. Sci. USA 108, 4714–4719 (2011).

    ADS  Google Scholar 

  26. Park, J.-A. et al. Unjamming and cell shape in the asthmatic airway epithelium. Nat. Mat. 14, 1040–1049 (2015).

    Google Scholar 

  27. Garcia, S. et al. Physics of active jamming during collective cellular motion in a monolayer. Proc. Natl Acad. Sci. USA 112, 15314–15319 (2015).

    ADS  Google Scholar 

  28. Vedel, S., Tay, S., Johnston, D. M., Bruus, H. & Quake, S. R. Migration of cells in a social context. Proc. Natl Acad. Sci. USA 110, 129–134 (2013).

    ADS  Google Scholar 

  29. Fily, Y. & Marchetti, M. C. Athermal phase separation of self-propelled particles with no alignment. Phys. Rev. Lett. 108, 235702 (2012).

    ADS  Google Scholar 

  30. Friedl, P. & Wolf, K. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188, 11–19 (2010).

    Google Scholar 

  31. Artemenko, Y., Lampert, T. J. & Devreotes, P. N. Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell. Mol. Life Sci. 71, 3711–3747 (2014).

    Google Scholar 

  32. Friedl, P., Borgmann, S. & Bröcker, E. B. Amoeboid leukocyte crawling through extracellular matrix: lessons from the Dictyostelium paradigm of cell movement. J. Leukoc. Biol. 70, 491–509 (2001).

    Google Scholar 

  33. Levine, H. Learning physics of living systems from Dictyostelium. Phys. Biol. 11, 053011 (2014).

    ADS  Google Scholar 

  34. Coates, J. C. & Harwood, A. J. Cell–cell adhesion and signal transduction during Dictyostelium development. J. Cell Sci. 114, 4349–4358 (2001).

    Google Scholar 

  35. Poujade, M. et al. Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl Acad. Sci. USA 104, 15988–15993 (2007).

    ADS  Google Scholar 

  36. Cates, M. E. & Tailleur, J. When are active Brownian particles and run-and-tumble particles equivalent? consequences for motility-induced phase separation. Europhys. Lett. 101, 20010 (2013).

    ADS  Google Scholar 

  37. Bosgraaf, L. & Van Haastert, P. J. M. The ordered extension of pseudopodia by amoeboid cells in the absence of external cues. PLoS ONE 4, e5253 (2009).

    ADS  Google Scholar 

  38. Peruani, F., Deutsch, A. & Bär, A. Nonequilibrium clustering of self-propelled rods. Phys. Rev. E 74, 030904 (2006).

    ADS  Google Scholar 

  39. Peruani, F. et al. Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria. Phys. Rev. Lett. 108, 098102 (2012).

    ADS  Google Scholar 

  40. Solon, A. P. et al. Pressure and phase equilibria in interacting active Brownian spheres. Phys. Rev. Lett. 114, 198301 (2015).

    ADS  Google Scholar 

  41. Bruna, M. & Chapman, S. J. Excluded-volume effects in the diffusion of hard spheres. Phys. Rev. E 85, 011103 (2012).

    ADS  Google Scholar 

  42. Kaiser, D. Bacterial swarming: a re-examination of cell-movement patterns. Curr. Biol. 17, R561–R570 (2007).

    Google Scholar 

  43. Kaiser, D. & Crosby, C. Cell movement and its coordination in swarms of Myxococcus xanthus. Cell Motil. 3, 227–245 (1983).

    Google Scholar 

  44. Patra, P., Kissoon, K., Cornejo, I., Kaplan, H. B. & Igoshin, O. A. Colony expansion of socially motile Myxococcus xanthus cells is driven by growth, motility, and exopolysaccharide production. PLoS Comput. Biol. 12, e1005010 (2016).

    ADS  Google Scholar 

  45. Potdar, A. A., Jeon, J., Weaver, A. M., Quaranta, V. & Cummings, P. T. Human mammary epithelial cells exhibit a bimodal correlated random walk pattern. PLoS ONE 5, e9636 (2010).

    ADS  Google Scholar 

  46. Li, L., Cox, E. C. & Flyvbjerg, H. ‘Dicty dynamics’: Dictyostelium motility as persistent random motion. Phys. Biol. 8, 046006 (2011).

    ADS  Google Scholar 

  47. Bénichou, O., Loverdo, C., Moreau, M. & Voituriez, R. Intermittent search strategies. Rev. Mod. Phys. 83, 81–129 (2011).

    ADS  MATH  Google Scholar 

  48. Metzner, C. et al. Superstatistical analysis and modelling of heterogeneous random walks. Nat. Commun. 6, 7516 (2015).

    ADS  Google Scholar 

  49. Lavi, I., Piel, M., Lennon-Duménil, A.-M., Voituriez, R. & Gov, N. S. Deterministic patterns in cell motility. Nat. Phys. 12, 1146–1152 (2016).

    Google Scholar 

  50. Zimmermann, J., Camley, B. A., Rappel, W.-J. & Levine, H. Contact inhibition of locomotion determines cell–cell and cell-substrate forces in tissues. Proc. Natl Acad. Sci. USA 113, 2660–2665 (2016).

    ADS  Google Scholar 

  51. Ramdya, P. et al. Mechanosensory interactions drive collective behaviour in Drosophila. Nature 519, 233–236 (2015).

    ADS  Google Scholar 

  52. Roycroft, A. & Mayor, R. Molecular basis of contact inhibition of locomotion. Cell. Mol. Life Sci. 73, 1119–1130 (2016).

    Google Scholar 

  53. Etzrodt, M. et al. Time-resolved responses to chemoattractant, characteristic of the front and tail of Dictyostelium cells. FEBS Lett. 580, 6707–6713 (2006).

    Google Scholar 

  54. Dalous, J. et al. Reversal of cell polarity and actin-myosin cytoskeleton reorganization under mechanical and chemical stimulation. Biophys. J. 94, 1063–1074 (2008).

    ADS  Google Scholar 

  55. Davis, J. R. et al. Emergence of embryonic pattern through contact inhibition of locomotion. Development 139, 4555–4560 (2012).

    Google Scholar 

  56. Camley, B. A., Zimmermann, J., Levine, H. & Rappell, W.-J. Emergent collective chemotaxis without single-cell gradient sensing. Phys. Rev. Lett. 116, 098101 (2016).

    ADS  Google Scholar 

  57. Szabo, A. et al. In vivo confinement promotes collective migration of neural crest cells. J. Cell. Biol. 213, 543–555 (2016).

    Google Scholar 

  58. Berezhkovskii, A. M., Makhnovskii, Y. A. & Suris, R. A. Wiener sausage volume moments. J. Stat. Phys. 57, 333–346 (1989).

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to R. Fulcrand for his help in micro-fabrication, to V. Hakim for stimulating discussions and to C. Cottin-Bizonne for her comments on the manuscript. J.d’A. has been partially supported by the Fondation ARC pour la Recherche sur le Cancer and by the Programme d’Avenir Lyon-Saint Étienne. A.S. acknowledges funding through a PLS fellowship of the Gordon and Betty Moor foundation. J.d’A., C.R. and J.-P.R. belong to the CNRS consortium CellTiss and to the LIA ELyTLab.

Author information

Authors and Affiliations

Authors

Contributions

J.d’A., J.-P.R. and C.R. designed experiments; J.d’A. performed experiments and analysed experimental data; J.d’A. and A.S. conceived the particle-based models; A.S. performed simulations and analysed simulation data; C.A. contributed to design of experiments in Supplementary Fig. 1 and provided AprA cells; F.D. computed the analytical results on bimodal trajectories and helped with the fitting procedure; Y.H. assisted in the data analysis and interpretation; J.d’A. and A.S. wrote the manuscript; F.D., J.-P.R. and C.R. made substantial contributions to the manuscript; all authors discussed and interpreted the data, read and commented on the manuscript; J.-P.R. and C.R. supervised the project.

Corresponding authors

Correspondence to Joseph d’Alessandro or Charlotte Rivière.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 856 kb)

Supplementary movie

Supplementary movie 1 (MP4 4079 kb)

Supplementary movie

Supplementary movie 2 (MP4 1102 kb)

Supplementary movie

Supplementary movie 3 (MP4 1117 kb)

Supplementary movie

Supplementary movie 4 (MP4 539 kb)

Supplementary movie

Supplementary movie 5 (MP4 3741 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

d’Alessandro, J., Solon, A., Hayakawa, Y. et al. Contact enhancement of locomotion in spreading cell colonies. Nature Phys 13, 999–1005 (2017). https://doi.org/10.1038/nphys4180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4180

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing