Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oleoplaning droplets on lubricated surfaces

Abstract

Recently, there has been much interest in using lubricated surfaces to achieve extreme liquid repellency: a foreign droplet immiscible with the underlying lubricant layer was shown to slide off at a small tilt angle <5°. This behaviour was hypothesized to arise from a thin lubricant overlayer film sandwiched between the droplet and solid substrate, but this has not been observed experimentally. Here, using thin-film interference, we are able to visualize the intercalated film under both static and dynamic conditions. We further demonstrate that for a moving droplet, the film thickness follows the Landau–Levich–Derjaguin law. The droplet is therefore oleoplaning—akin to tyres hydroplaning on a wet road—with minimal dissipative force and no contact line pinning. The techniques and insights presented in this study will inform future work on the fundamentals of wetting for lubricated surfaces and enable their rational design.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Visualization of the lubricant film profile between the droplet and the solid using dual-wavelength, confocal reflection interference contrast microscopy.
Figure 2: Equilibrium lubrication states L1–3 of an oil film sandwiched between a droplet and a flat solid surface.
Figure 3: Lubrication states for lubricant-infused surfaces bearing a hexagonal array of microposts with diameter D = 26 μm, pitch p = 50 μm and height hp = 30 μm.
Figure 4: Micrometre-thick lubricant film stabilized under motion.
Figure 5: Dissipative force Fd acting on oleoplaning droplets.

References

  1. 1

    Bocquet, L. & Lauga, E. A smooth future? Nat. Mat. 10, 334–337 (2011).

    Article  Google Scholar 

  2. 2

    Quéré, D. Wetting and roughness. Annu. Rev. Mater. Res. 38, 71–99 (2008).

    ADS  Article  Google Scholar 

  3. 3

    Snoeijer, J. H. & Andreotti, B. Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269–292 (2013).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4

    Eral, H. B., ’t Mannetje, D. J. C. M. & Oh, J. M. Contact angle hysteresis: a review of fundamentals and applications. Colloid Polym. Sci. 291, 247–260 (2012).

    Article  Google Scholar 

  5. 5

    Blake, T. D. The physics of moving wetting lines. J. Colloid Interface Sci. 299, 1–13 (2006).

    ADS  Article  Google Scholar 

  6. 6

    Reyssat, M., Richard, D., Clanet, C. & Quéré, D. Dynamical superhydrophobicity. Faraday Discuss. 146, 19–33 (2010).

    ADS  Article  Google Scholar 

  7. 7

    Sojoudi, H., Wang, M., Boscher, N., McKinley, G. & Gleason, K. Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces. Soft Matter 12, 1938–1963 (2016).

    ADS  Article  Google Scholar 

  8. 8

    Genzer, J. & Efimenko, K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling 22, 339–360 (2006).

    Article  Google Scholar 

  9. 9

    Lafuma, A. & Quéré, D. Superhydrophobic states. Nat. Mater. 2, 457–460 (2003).

    ADS  Article  Google Scholar 

  10. 10

    Reyssat, M., Pépin, A., Marty, F., Chen, Y. & Quéré, D. Bouncing transitions on microtextured materials. Europhys. Lett. 74, 306–312 (2006).

    ADS  Article  Google Scholar 

  11. 11

    Tuteja, A., Choi, W., Mabry, J. M., McKinley, G. H. & Cohen, R. E. Robust omniphobic surfaces. Proc. Natl Acad. Sci. USA 105, 18200–18205 (2008).

    ADS  Article  Google Scholar 

  12. 12

    Dorrer, C. & Rühe, J. Condensation and wetting transitions on microstructured ultrahydrophobic surfaces. Langmuir 23, 3820–3824 (2007).

    Article  Google Scholar 

  13. 13

    Verho, T. et al. Mechanically durable superhydrophobic surfaces. Adv. Mater. 23, 673–678 (2011).

    Article  Google Scholar 

  14. 14

    Tian, X., Verho, T. & Ras, R. H. Moving superhydrophobic surfaces toward real-world applications. Science 352, 142–143 (2016).

    ADS  Article  Google Scholar 

  15. 15

    Lafuma, A. & Quéré, D. Slippery pre-suffused surfaces. Europhys. Lett. 96, 56001 (2011).

    ADS  Article  Google Scholar 

  16. 16

    Wong, T.-S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

    ADS  Article  Google Scholar 

  17. 17

    Baker, H. R., Bascom, W. D. & Singleterry, C. R. The adhesion of ice to lubricated surfaces. J. Colloid Sci. 17, 477–491 (1962).

    Article  Google Scholar 

  18. 18

    Grinthal, A. & Aizenberg, J. Mobile interfaces: liquids as a perfect structural material for multifunctional, antifouling surfaces. Chem. Mater. 26, 698–708 (2014).

    Article  Google Scholar 

  19. 19

    Kim, P. et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 6, 6569–6577 (2012).

    Article  Google Scholar 

  20. 20

    Epstein, A. K., Wong, T.-S., Belisle, R. A., Boggs, E. M. & Aizenberg, J. Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc. Natl Acad. Sci. USA 109, 13182–13187 (2012).

    ADS  Article  Google Scholar 

  21. 21

    Smith, J. D. et al. Droplet mobility on lubricant-impregnated surfaces. Soft Matter 9, 1772–1780 (2013).

    ADS  Google Scholar 

  22. 22

    Schellenberger, F. et al. Direct observation of drops on slippery lubricant-infused surfaces. Soft Matter 11, 7617–7626 (2015).

    ADS  Article  Google Scholar 

  23. 23

    de Ruiter, J., Mugele, F. & van den Ende, D. Air cushioning in droplet impact. I. Dynamics of thin films studied by dual wavelength reflection interference microscopy. Phys. Fluids 27, 012104 (2015).

    ADS  Article  Google Scholar 

  24. 24

    Curtis, A. S. G. The mechanism of adhesion of cells to glass. A study by interference reflection microscopy. J. Cell. Biol. 20, 199–215 (1964).

    Article  Google Scholar 

  25. 25

    Schilling, J., Sengupta, K., Goennenwein, S., Bausch, A. R. & Sackmann, E. Absolute interfacial distance measurements by dual-wavelength reflection interference contrast microscopy. Phys. Rev. E 69, 021901 (2004).

    ADS  Article  Google Scholar 

  26. 26

    Limozin, L. & Sengupta, K. Quantitative reflection interference contrast microscopy (RICM) in soft matter and cell adhesion. Chem. Phys. Chem. 10, 2752–2768 (2009).

    Article  Google Scholar 

  27. 27

    de Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer Science & Business Media, 2013).

    MATH  Google Scholar 

  28. 28

    Brochard-Wyart, F., Di Meglio, J. M., Quéré, D. & de Gennes, P. G. Spreading of nonvolatile liquids in a continuum picture. Langmuir 7, 335–338 (1991).

    Article  Google Scholar 

  29. 29

    Israelachvili, J. N. Intermolecular and Surface Forces 3rd edn (Academic, 2011).

    Google Scholar 

  30. 30

    Landau, L. & Levich, V. Dragging of a liquid by a moving plate. Acta Physicochim. USSR 17, 42–54 (1942).

    Google Scholar 

  31. 31

    Derjaguin, B. Thickness of liquid layer adhering to walls of vessels on their emptying and the theory of photo and motion-picture film coating. Dokl. Acad. Sci. USSR 39, 13–16 (1943).

    Google Scholar 

  32. 32

    Bretherton, F. The motion of long bubbles in tubes. J. Fluid Mech. 10, 166–188 (1961).

    ADS  MathSciNet  Article  Google Scholar 

  33. 33

    Cantat, I. Liquid meniscus friction on a wet plate: bubbles, lamellae, and foams. Phys. Fluids 25, 031303 (2013).

    ADS  Article  Google Scholar 

  34. 34

    Pilat, D. et al. Dynamic measurement of the force required to move a liquid drop on a solid surface. Langmuir 28, 16812–16820 (2012).

    Article  Google Scholar 

  35. 35

    Lagubeau, G., Le Merrer, M., Clanet, C. & Quéré, D. Leidenfrost on a ratchet. Nat. Phys. 7, 395–398 (2011).

    Article  Google Scholar 

  36. 36

    ‘t Mannetje, D. et al. Electrically tunable wetting defects characterized by a simple capillary force sensor. Langmuir 29, 9944–9949 (2013).

    Article  Google Scholar 

  37. 37

    Joanny, J. F. & de Gennes, P.-G. A model for contact angle hysteresis. J. Chem. Phys. 81, 552–562 (1984).

    ADS  Article  Google Scholar 

  38. 38

    Bodas, D. S., Mandale, A. & Gangal, S. Deposition of PTFE thin films by RF plasma sputtering on 〈100〉 silicon substrates. Appl. Surf. Sci. 245, 202 (2005).

    ADS  Article  Google Scholar 

  39. 39

    Pokroy, B., Epstein, A. K., Persson-Gulda, M. & Aizenberg, J. Fabrication of bioinspired actuated nanostructures with arbitrary geometry and stiffness. Adv. Mater. 21, 463–469 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K.-C. Park, C. N. Kaplan and H. A. Stone for fruitful discussions. The work was supported by the Office of Naval Research, US Department of Defense, under MURI Award No. N00014-12-1-0875. J.V.I.T. was supported by the European Commission through the Seventh Framework Programme (FP7) project DynaSLIPS (project number 626954). We acknowledge the use of the facilities at the Harvard Center for Nanoscale Systems supported by the NSF under Award No. ECS-0335765 and at the Harvard Materials Research Science and Engineering Center (MRSEC) under Award No. DMR-1420570.

Author information

Affiliations

Authors

Contributions

D.D., J.V.I.T. and J.A. conceived of and planned the experiments. D.D., R.L. and S.J.V. executed the experimental work. D.D., J.V.I.T. and J.A. analysed the experimental results and wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Joanna Aizenberg.

Ethics declarations

Competing interests

J.A. is the founder of SLIPS Technologies, Inc.

Supplementary information

Supplementary information

Supplementary information (PDF 2387 kb)

Supplementary movie

Supplementary movie 1 (MOV 1263 kb)

Supplementary movie

Supplementary movie 2 (MOV 2940 kb)

Supplementary movie

Supplementary movie 3 (MOV 1309 kb)

Supplementary movie

Supplementary movie 4 (MOV 1705 kb)

Supplementary movie

Supplementary movie 5 (MOV 248 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Daniel, D., Timonen, J., Li, R. et al. Oleoplaning droplets on lubricated surfaces. Nature Phys 13, 1020–1025 (2017). https://doi.org/10.1038/nphys4177

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing