Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-distance spin transport in a disordered magnetic insulator

Abstract

Spin transport through magnetic insulators via magnons has been explored for a variety of crystalline materials. Here we show dramatic effects of spin transport through an amorphous magnetic insulator, which is both magnetically and structurally disordered. We observe spin flow though amorphous yttrium-iron-garnet (a-YIG) thin films in a non-local geometry by use of the spin Hall and inverse spin Hall effects in platinum strips separated by ten or more micrometres. By comparing a-YIG grown on suspended micromachined thermal isolation platforms to the same film on bulk substrates, we show strong effects of in-plane thermal gradients on spin transport in the disordered film. The resulting signals are orders of magnitude larger than those seen in crystalline magnetic insulators, and easily measurable even for distances greater than 100 μm. In analogy to heat transport in glasses, where a range of vibrational excitations can allow large thermal conductivities, we suggest that efficient spin transport in disordered systems can occur via a similar spectrum of excitations that relies on strong local exchange interactions and does not require long-range order. This opens a new area for experimental and theoretical studies of spin transport, and sets a new direction in materials science for magnonic and spintronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic views of experiments in long-distance spin transport.
Figure 2: Non-local spin transport through suspended a-YIG.
Figure 3: Intentional manipulation of the direction of the thermal gradient.
Figure 4: Vnl versus T from 5 to 300 K indicating spin transport through 100- and 200-nm-thick a-YIG on the substrate.
Figure 5: Distance dependence of Vnl on the substrate.
Figure 6: Dependence of Vnl on applied field.

Similar content being viewed by others

References

  1. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  Google Scholar 

  2. Serga, A. A., Chumak, A. V. & Hillebrands, B. YIG magnonics. J. Phys. D 43, 264002 (2010).

    Article  ADS  Google Scholar 

  3. Jakubisova-Liskova, E., Visnovsky, S., Chang, H. & Wu, M. Optical spectroscopy of sputtered nanometer-thick yttrium iron garnet films. J. Appl. Phys. 117, 17B702 (2015).

    Article  Google Scholar 

  4. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  ADS  Google Scholar 

  5. Hoffmann, A. Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013).

    Article  ADS  Google Scholar 

  6. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  ADS  Google Scholar 

  7. Dyakonov, M. & Perel, V. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).

    Article  ADS  Google Scholar 

  8. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article  ADS  Google Scholar 

  9. Cornelissen, L. J. & van Wees, B. J. Magnetic field dependence of the magnon spin diffusion length in the magnetic insulator yttrium iron garnet. Phys. Rev. B 93, 020403 (2016).

    Article  ADS  Google Scholar 

  10. Vélez, S., Bedoya-Pinto, A., Yan, W., Hueso, L. E. & Casanova, F. Competing effects at Pt/YIG interfaces: spin Hall magnetoresistance, magnon excitations, and magnetic frustration. Phys. Rev. B 94, 174405 (2016).

    Article  ADS  Google Scholar 

  11. Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. B. & van Wees, B. J. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).

    Article  Google Scholar 

  12. Goennenwein, S. T. B. et al. Non-local magnetoresistance in YIG/Pt nanostructures. Appl. Phys. Lett. 107, 172405 (2015).

    Article  ADS  Google Scholar 

  13. Giles, B. L., Yang, Z., Jamison, J. S. & Myers, R. C. Long-range pure magnon spin diffusion observed in a nonlocal spin-Seebeck geometry. Phys. Rev. B 92, 224415 (2015).

    Article  ADS  Google Scholar 

  14. Lauer, V. et al. Spin-transfer torque based damping control of parametrically excited spin waves in a magnetic insulator. Appl. Phys. Lett. 108, 012402 (2016).

    Article  ADS  Google Scholar 

  15. Jungfleisch, M. B. et al. Large spin-wave bullet in a ferrimagnetic insulator driven by the spin Hall effect. Phys. Rev. Lett. 116, 057601 (2016).

    Article  ADS  Google Scholar 

  16. Safranski, C. et al. Spin caloritronic nano-oscillator. Preprint at http://arxiv.org/abs/1611.00887 (2016).

  17. Hamadeh, A. et al. Full control of the spin-wave damping in a magnetic insulator using spin–orbit torque. Phys. Rev. Lett. 113, 197203 (2014).

    Article  ADS  Google Scholar 

  18. Chumak, A. V. et al. Direct detection of magnon spin transport by the inverse spin Hall effect. Appl. Phys. Lett. 100, 082405 (2012).

    Article  ADS  Google Scholar 

  19. Zhou, Y., Jiao, H., Chen, Y.-t., Bauer, G. E. W. & Xiao, J. Current-induced spin-wave excitation in Pt/YIG bilayer. Phys. Rev. B 88, 184403 (2013).

    Article  ADS  Google Scholar 

  20. Xiao, J. & Bauer, G. E. W. Spin-wave excitation in magnetic insulators by spin-transfer torque. Phys. Rev. Lett. 108, 217204 (2012).

    Article  ADS  Google Scholar 

  21. Chen, W., Sigrist, M., Sinova, J. & Manske, D. Minimal model of spin-transfer torque and spin pumping caused by the spin Hall effect. Phys. Rev. Lett. 115, 217203 (2015).

    Article  ADS  Google Scholar 

  22. Cunha, R. O., Padrón-Hernández, E., Azevedo, A. & Rezende, S. M. Controlling the relaxation of propagating spin waves in yttrium iron garnet/Pt bilayers with thermal gradients. Phys. Rev. B 87, 184401 (2013).

    Article  ADS  Google Scholar 

  23. An, T. et al. Unidirectional spin-wave heat conveyer. Nat. Mater. 12, 549–553 (2013).

    Article  ADS  Google Scholar 

  24. Shan, J. et al. Influence of yttrium iron garnet thickness and heater opacity on the nonlocal transport of electrically and thermally excited magnons. Phys. Rev. B 94, 174437 (2016).

    Article  ADS  Google Scholar 

  25. Wang, H., Du, C., Hammel, P. C. & Yang, F. Antiferromagnonic spin transport from Y3Fe5O12 . Phys. Rev. Lett. 113, 097202 (2014).

    Article  ADS  Google Scholar 

  26. Hahn, C. et al. Conduction of spin currents through insulating antiferromagnetic oxides. Europhys. Lett. 108, 57005 (2014).

    Article  ADS  Google Scholar 

  27. Lin, W., Chen, K., Zhang, S. & Chien, C. L. Enhancement of thermally injected spin current through an antiferromagnetic insulator. Phys. Rev. Lett. 116, 186601 (2016).

    Article  ADS  Google Scholar 

  28. Wang, H., Du, C., Hammel, P. C. & Yang, F. Spin transport in antiferromagnetic insulators mediated by magnetic correlations. Phys. Rev. B 91, 220410 (2015).

    Article  ADS  Google Scholar 

  29. Zink, B. L. et al. Efficient spin transport through native oxides of nickel and permalloy with platinum and gold overlayers. Phys. Rev. B 93, 184401 (2016).

    Article  ADS  Google Scholar 

  30. Khymyn, R., Lisenkov, I., Tiberkevich, V. S., Slavin, A. N. & Ivanov, B. A. Transformation of spin current by antiferromagnetic insulators. Phys. Rev. B 93, 224421 (2016).

    Article  ADS  Google Scholar 

  31. Baltz, V. et al. Antiferromagnetism: the next flagship magnetic order for spintronics? Preprint at http://arxiv.org/abs/1606.04284 (2016).

  32. Rezende, S. M., Rodríguez-Suárez, R. L. & Azevedo, A. Diffusive magnonic spin transport in antiferromagnetic insulators. Phys. Rev. B 93, 054412 (2016).

    Article  ADS  Google Scholar 

  33. Wu, S. M. et al. Antiferromagnetic spin Seebeck effect. Phys. Rev. Lett. 116, 097204 (2016).

    Article  ADS  Google Scholar 

  34. Prakash, A., Brangham, J., Yang, F. & Heremans, J. P. Spin Seebeck effect through antiferro-magnetic NiO. Phys. Rev. B 94, 014427 (2016).

    Article  ADS  Google Scholar 

  35. Seki, S. et al. Thermal generation of spin current in an antiferromagnet. Phys. Rev. Lett. 115, 266601 (2015).

    Article  ADS  Google Scholar 

  36. Wu, S. M., Pearson, J. E. & Bhattacharya, A. Paramagnetic spin Seebeck effect. Phys. Rev. Lett. 114, 186602 (2015).

    Article  ADS  Google Scholar 

  37. Shiomi, Y. & Saitoh, E. Paramagnetic spin pumping. Phys. Rev. Lett. 113, 266602 (2014).

    Article  ADS  Google Scholar 

  38. Gyorgy, E. M. et al. The magnetic properties of amorphous Y3Fe5O12 . J. Appl. Phys. 50, 2883 (1979).

    Article  ADS  Google Scholar 

  39. Chukalkin, Y. G., Shtirz, V. R. & Goshchitskii, B. N. The structure and magnetism of amorphous Y3Fe5O12 . Phys. Status Solidi a 112, 161–174 (1989).

    Article  ADS  Google Scholar 

  40. Chang, H. et al. Nanometer-thick yttrium iron garnet films with extremely low damping. IEEE Magn. Lett. 5, 1–4 (2014).

    Article  ADS  Google Scholar 

  41. Sultan, R. et al. Heat transport by long mean free path vibrations in amorphous silicon nitride near room temperature. Phys. Rev. B 87, 214305 (2013).

    Article  ADS  Google Scholar 

  42. Avery, A. D., Mason, S. J., Bassett, D., Wesenberg, D. & Zink, B. L. Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann–Franz law. Phys. Rev. B 92, 214410 (2015).

    Article  ADS  Google Scholar 

  43. Avery, A. D., Pufall, M. R. & Zink, B. L. Observation of the planar Nernst effect in permalloy and nickel thin films with in-plane thermal gradients. Phys. Rev. Lett. 109, 196602 (2012).

    Article  ADS  Google Scholar 

  44. Avery, A. D. & Zink, B. L. Peltier cooling and Onsager reciprocity in ferromagnetic thin films. Phys. Rev. Lett. 111, 126602 (2013).

    Article  ADS  Google Scholar 

  45. Huber, D. Distribution of magnon modes in disordered two dimensional Heisenberg ferro and antiferromagnets. Solid State Commun. 14, 1153–1155 (1974).

    Article  ADS  Google Scholar 

  46. Wingert, M. C., Zheng, J., Kwon, S. & Chen, R. Thermal transport in amorphous materials: a review. Semicond. Sci. Technol. 31, 113003 (2016).

    Article  ADS  Google Scholar 

  47. Braun, J. L. et al. Size effects on the thermal conductivity of amorphous silicon thin films. Phys. Rev. B 93, 140201 (2016).

    Article  ADS  Google Scholar 

  48. Larkin, J. M. & McGaughey, A. J. H. Thermal conductivity accumulation in amorphous silica and amorphous silicon. Phys. Rev. B 89, 144303 (2014).

    Article  ADS  Google Scholar 

  49. Liu, X. et al. High thermal conductivity of a hydrogenated amorphous silicon film. Phys. Rev. Lett. 102, 035901 (2009).

    Article  ADS  Google Scholar 

  50. Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D 43, 264001 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Hojem for helpful discussions and assistance in the lab, D. Schmidt for assistance with optical imaging, the NIST Boulder magnetics group for access to the SQUID magnetometer and advice, X. Fan and A. Humphries for deposition of the SiO2 film, and J. Nogan and the IL staff at CINT for guidance and training in fabrication techniques. D.W. and B.L.Z. gratefully acknowledge support from the NSF (DMR-1410247). This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). The growth of the YIG films at CSU was supported by the SHINES, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award SC0012670.

Author information

Authors and Affiliations

Authors

Contributions

Thermal isolation platforms were designed by D.W. and B.L.Z., and fabricated, measured, and analysed by D.W. under supervision of B.L.Z. a-YIG films were deposited by T.L. under supervision of M.W. XRD on films and YIG substrates was performed and analysed by D.B. FEM thermal calculations were performed by D.W. with consultation and input from B.L.Z. B.L.Z. initiated the study with consultation from M.W. D.W. and B.L.Z. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Barry L. Zink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wesenberg, D., Liu, T., Balzar, D. et al. Long-distance spin transport in a disordered magnetic insulator. Nature Phys 13, 987–993 (2017). https://doi.org/10.1038/nphys4175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing