Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating


We describe a new technique for the efficient generation of high-energy ions with electromagnetic ion cyclotron waves in multi-ion plasmas. The discussed ‘three-ion’ scenarios are especially suited for strong wave absorption by a very low number of resonant ions. To observe this effect, the plasma composition has to be properly adjusted, as prescribed by theory. We demonstrate the potential of the method on the world-largest plasma magnetic confinement device, JET (Joint European Torus, Culham, UK), and the high-magnetic-field tokamak Alcator C-Mod (Cambridge, USA). The obtained results demonstrate efficient acceleration of 3He ions to high energies in dedicated hydrogen–deuterium mixtures. Simultaneously, effective plasma heating is observed, as a result of the slowing-down of the fast 3He ions. The developed technique is not only limited to laboratory plasmas, but can also be applied to explain observations of energetic ions in space-plasma environments, in particular, 3He-rich solar flares.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A new technique for fast-ion generation in magnetized multi-ion plasmas.
Figure 2: Illustration of the performance of the D–(3He)–H three-ion ICRH scenario on Alcator C-Mod and JET tokamaks.
Figure 3: Gamma-ray emission from 3He + 9Be nuclear reactions, proving the presence of energetic ICRH-accelerated 3He ions.
Figure 4: Excitation of Alfvénic eigenmodes in magnetic fluctuation spectrograms, another proof of the presence of ICRH-accelerated fast ions.
Figure 5: Three-ion ICRH scenarios also explain some of the observations of energetic ions in space environments, in particular, 3He-rich solar flares.


  1. 1

    Ongena, J. et al. Magnetic-confinement fusion. Nat. Phys. 12, 398–410 (2016).

    Article  Google Scholar 

  2. 2

    Adam, J. Review of tokamak plasma heating by wave damping in the ion cyclotron range of frequency. Plasma Phys. Control. Fusion 29, 443–472 (1987).

    ADS  Article  Google Scholar 

  3. 3

    Porkolab, M. et al. Recent progress in ICRF physics. Plasma Phys. Control. Fusion 40, A35–A52 (1998).

    Article  Google Scholar 

  4. 4

    Noterdaeme, J.-M. et al. Physics studies with the additional heating systems in JET. Fusion Sci. Tech. 53, 1103–1151 (2008).

    Article  Google Scholar 

  5. 5

    Lerche, E. et al. Optimization of ICRH for core impurity control in JET-ILW. Nucl. Fusion 56, 036022 (2016).

    ADS  Article  Google Scholar 

  6. 6

    Van Eester, D. et al. JET (3He)–D scenarios relying on RF heating: survey of selected recent experiments. Plasma Phys. Control. Fusion 51, 044007 (2009).

    ADS  Article  Google Scholar 

  7. 7

    Mantsinen, M. J. et al. Localized bulk electron heating with ICRF mode conversion in the JET tokamak. Nucl. Fusion 44, 33–46 (2004).

    ADS  Article  Google Scholar 

  8. 8

    Kazakov, Ye. O. et al. On resonant ICRF absorption in three-ion component plasmas: a new promising tool for fast ion generation. Nucl. Fusion 55, 032001 (2015).

    ADS  Article  Google Scholar 

  9. 9

    Kazakov, Ye. O. et al. Fast ion generation and bulk plasma heating with three-ion ICRF scenarios. AIP Conf. Proc. 1689, 030008 (2015).

    Article  Google Scholar 

  10. 10

    Kazakov, Ye. O. et al. A new ion cyclotron range of frequency scenario for bulk ion heating in deuterium–tritium plasmas: How to utilize intrinsic impurities in our favour. Phys. Plasmas 22, 082511 (2015).

    ADS  Article  Google Scholar 

  11. 11

    Van Eester, D. & Koch, R. A variational principle for studying fast-wave mode conversion. Plasma Phys. Control. Fusion 40, 1949–1975 (1998).

    ADS  Article  Google Scholar 

  12. 12

    Marmar, E. S. et al. Alcator C-Mod: research in support of ITER and steps beyond. Nucl. Fusion 55, 104020 (2015).

    ADS  Article  Google Scholar 

  13. 13

    ITER Physics Expert Groups on Confinement and Transport et al., Chapter 2: Plasma confinement and transport. Nucl. Fusion 39, 2175–2249 (1999).

    ADS  Article  Google Scholar 

  14. 14

    Breizman, B. N. & Sharapov, S. E. Major minority: energetic particles in fusion plasmas. Plasma Phys. Control. Fusion 53, 054001 (2011).

    ADS  Article  Google Scholar 

  15. 15

    Stix, T. H. Fast-wave heating of a two-component plasma. Nucl. Fusion 15, 737–754 (1975).

    ADS  Article  Google Scholar 

  16. 16

    Jaeger, E. F. et al. Advances in full-wave modeling of radio frequency heated, multidimensional plasmas. Phys. Plasmas 9, 1873–1881 (2002).

    ADS  Article  Google Scholar 

  17. 17

    Eriksson, L.-G. et al. ICRF heating of JET plasmas with the third harmonic deuterium resonance. Nucl. Fusion 38, 265–278 (1998).

    ADS  Article  Google Scholar 

  18. 18

    Jucker, M. Integrated modeling for ion cyclotron resonant heating in toroidal systems. Comput. Phys. Commun. 182, 912–925 (2011).

    ADS  Article  Google Scholar 

  19. 19

    Porcelli, F. et al. Model for the sawtooth period and amplitude. Plasma Phys. Control. Fusion 38, 2163–2186 (1996).

    ADS  Article  Google Scholar 

  20. 20

    Graves, J. P. et al. Control of magnetohydrodynamic stability by phase space engineering of energetic ions in tokamak plasmas. Nat. Commun. 3, 624 (2012).

    ADS  Article  Google Scholar 

  21. 21

    Kiptily, V. G. et al. Gamma ray diagnostics of high temperature magnetically confined fusion plasmas. Plasma Phys. Control. Fusion 48, R59–R82 (2006).

    Article  Google Scholar 

  22. 22

    Tardocchi, M. et al. Diagnosis of physical parameters of fast particles in high power fusion plasmas with high resolution neutron and gamma-ray spectroscopy. Plasma Phys. Control. Fusion 55, 074014 (2013).

    ADS  Article  Google Scholar 

  23. 23

    Nocente, M. et al. High resolution gamma ray spectroscopy at MHz counting rates with LaBr3 scintillators for fusion plasma applications. IEEE Trans. Nucl. Sci. 60, 1408–1415 (2013).

    ADS  Article  Google Scholar 

  24. 24

    Coker, W. R. et al. An investigation of the 9Be(3He, p)11B reaction at low energies. Nucl. Phys. A 91, 97–111 (1967).

    ADS  Article  Google Scholar 

  25. 25

    Mantsinen, M. J. et al. Controlling the profile of ion-cyclotron-resonant ions in JET with the wave-induced pinch effect. Phys. Rev. Lett. 89, 115004 (2002).

    ADS  Article  Google Scholar 

  26. 26

    Mikhailovskii, A. B. et al. Optimization of computational MHD normal-mode analysis in tokamaks. Plasma Phys. Rep. 23, 844–857 (1997).

    ADS  Google Scholar 

  27. 27

    Wilson, J. R. et al. Ion cyclotron range of frequencies heating and flow generation in deuterium–tritium plasmas. Phys. Plasmas 5, 1721–1726 (1998).

    ADS  Article  Google Scholar 

  28. 28

    Fisk, L. A. 3He-rich flares: a possible explanation. Astrophys. J. 224, 1048–1055 (1978).

    ADS  Article  Google Scholar 

  29. 29

    Kocharov, L. G. & Kocharov, G. E. 3He-rich solar flares. Space Sci. Rev. 38, 89–141 (1984).

    ADS  Article  Google Scholar 

  30. 30

    Reames, D. V. Particle acceleration at the sun and in the heliosphere. Space Sci. Rev. 90, 413–491 (1999).

    ADS  Article  Google Scholar 

  31. 31

    Roth, I. & Temerin, M. Enrichment of 3He and heavy ions in impulsive solar flares. Astrophys. J. 477, 940–957 (1997).

    ADS  Article  Google Scholar 

  32. 32

    Ramadurai, S. et al. 3He-rich solar flares. Pramana – J. Phys. 23, 305–311 (1984).

    ADS  Article  Google Scholar 

  33. 33

    Litaudon, X. et al. Overview of the JET results in support to ITER. Nucl. Fusion (in the press).

Download references


This paper is dedicated to the late P. E. M. Vandenplas, founder and first director of LPP-ERM/KMS, in recognition of his lifelong outstanding commitment to fusion research, in particular to ICRH. The support from the JET and Alcator C-Mod Teams is warmly acknowledged. We are grateful to A. Cardinali, C. Castaldo, R. Dumont, J. Eriksson, T. Fülöp, C. Giroud, C. Hellesen, S. Menmuir and M. Schneider for fruitful discussions. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under grant agreement no. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was also supported by the US DoE, Office of Science, Office of Fusion Energy Sciences, SciDAC Center for Simulation of Wave Plasma Interactions under DE-FC02-01ER54648 and the User Facility Alcator C-Mod under DE-FC02-99ER54512. The Alcator C-Mod Team author list is reproduced from ref. 12. The JET Contributors author list is reproduced from ref. 33.

Author information





All authors have contributed to the publication, being variously involved in the design of the experiments, in running the diagnostics, acquiring data and finally analysing the processed data.

Corresponding author

Correspondence to Ye. O. Kazakov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 750 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kazakov, Y., Ongena, J., Wright, J. et al. Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating. Nature Phys 13, 973–978 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing