Abstract
The superconducting proximity effect in semiconductor nanowires has recently enabled the study of new superconducting architectures, such as gate-tunable superconducting qubits and multiterminal Josephson junctions. As opposed to their metallic counterparts, the electron density in semiconductor nanosystems is tunable by external electrostatic gates, providing a highly scalable and in situ variation of the device properties. In addition, semiconductors with large g-factor and spin–orbit coupling have been shown to give rise to exotic phenomena in superconductivity, such as φ0 Josephson junctions and the emergence of Majorana bound states. Here, we report microwave spectroscopy measurements that directly reveal the presence of Andreev bound states (ABS) in ballistic semiconductor channels. We show that the measured ABS spectra are the result of transport channels with gate-tunable, high transmission probabilities up to 0.9, which is required for gate-tunable Andreev qubits and beneficial for braiding schemes of Majorana states. For the first time, we detect excitations of a spin-split pair of ABS and observe symmetry-broken ABS, a direct consequence of the spin–orbit coupling in the semiconductor.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Microwave spectroscopy of Andreev states in InAs nanowire-based hybrid junctions using a flip-chip layout
Communications Physics Open Access 31 October 2022
-
Experimental review on Majorana zero-modes in hybrid nanowires
Science China Physics, Mechanics & Astronomy Open Access 02 September 2021
-
Observation of the 4π-periodic Josephson effect in indium arsenide nanowires
Nature Communications Open Access 16 January 2019
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Landauer, R. Can a length of perfect conductor have a resistance? Phys. Lett. A 85, 91–93 (1981).
Kulik, I. O. Macroscopic quantization and the proximity effect in SNS junctions. Sov. J. Exp. Theor. Phys. 30, 944–950 (1970).
Beenakker, C. W. J. Universal limit of critical-current fluctuations in mesoscopic Josephson junctions. Phys. Rev. Lett. 67, 3836–3839 (1991).
Bretheau, L., Girit, Ç. Ö., Pothier, H., Esteve, D. & Urbina, C. Exciting Andreev pairs in a superconducting atomic contact. Nature 499, 312–315 (2013).
Pillet, J.-D. et al. Andreev bound states in supercurrent-carrying carbon nanotubes revealed. Nat. Phys. 6, 965–969 (2010).
Chang, W., Manucharyan, V., Jespersen, T. S., Nygård, J. & Marcus, C. M. Tunneling spectroscopy of quasiparticle bound states in a spinful Josephson junction. Phys. Rev. Lett. 110, 217005 (2013).
Kos, F., Nigg, S. E. & Glazman, L. I. Frequency-dependent admittance of a short superconducting weak link. Phys. Rev. B 87, 174521 (2013).
Janvier, C. et al. Coherent manipulation of Andreev states in superconducting atomic contacts. Science 349, 1199–1202 (2015).
Väyrynen, J. I., Rastelli, G., Belzig, W. & Glazman, L. I. Microwave signatures of Majorana states in a topological Josephson junction. Phys. Rev. B 92, 134508 (2015).
Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).
Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).
Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).
Krogstrup, P. et al. Epitaxy of semiconductor-superconductor nanowires. Nat. Mater. 14, 400–406 (2015).
Holst, T., Esteve, D., Urbina, C. & Devoret, M. H. Effect of a transmission line resonator on a small capacitance tunnel junction. Phys. Rev. Lett. 73, 3455–3458 (1994).
Ambegaokar, V. & Baratoff, A. Tunneling between superconductors. Phys. Rev. Lett. 10, 486–489 (1963).
Chang, W. et al. Hard gap in epitaxial semiconductor-superconductor nanowires. Nat. Nanotech. 10, 232–236 (2015).
Doh, Y.-J. et al. Tunable supercurrent through semiconductor nanowires. Science 309, 272–275 (2005).
Larsen, T. W. et al. Semiconductor-nanowire-based superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015).
de Lange, G. et al. Realization of microwave quantum circuits using hybrid superconducting-semiconducting nanowire Josephson elements. Phys. Rev. Lett. 115, 127002 (2015).
Bretheau, L. et al. Theory of microwave spectroscopy of Andreev bound states with a Josephson junction. Phys. Rev. B 90, 134506 (2014).
Zazunov, A., Shumeiko, V. S., Bratus, E. N., Lantz, J. & Wendin, G. Andreev level qubit. Phys. Rev. Lett. 90, 087003 (2003).
Zazunov, A., Shumeiko, V. S., Wendin, G. & Bratus, E. N. Dynamics and phonon-induced decoherence of Andreev level qubit. Phys. Rev. B 71, 214505 (2005).
Cheng, M. & Lutchyn, R. M. Josephson current through a superconductor/semiconductor-nanowire/superconductor junction: effects of strong spin–orbit coupling and Zeeman splitting. Phys. Rev. B 86, 134522 (2012).
Das, A. et al. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887–895 (2012).
Higginbotham, A. P. et al. Parity lifetime of bound states in a proximitized semiconductor nanowire. Nat. Phys. 11, 1017–1021 (2015).
Albrecht, S. M. et al. Exponential protection of zero modes in Majorana islands. Nature 531, 206–209 (2016).
Michelsen, J., Shumeiko, V. S. & Wendin, G. Manipulation with Andreev states in spin active mesoscopic Josephson junctions. Phys. Rev. B 77, 184506 (2008).
Nijholt, B. & Akhmerov, A. R. Orbital effect of magnetic field on the Majorana phase diagram. Phys. Rev. B 93, 235434 (2016).
Meservey, R. & Tedrow, P. Properties of very thin aluminum films. J. Appl. Phys. 42, 51–53 (1971).
Yokoyama, T., Eto, M. & Nazarov, Y. V. Josephson current through semiconductor nanowire with spin–orbit interaction in magnetic field. J. Phys. Soc. Jpn 82, 054703 (2013).
Krive, I. V., Gorelik, L. Y., Shekhter, R. I. & Jonson, M. Chiral symmetry breaking and the Josephson current in a ballistic superconductor–quantum wire–superconductor junction. Low Temp. Phys. 30, 398–404 (2004).
Buzdin, A. Direct coupling between magnetism and superconducting current in the Josephson φ0 junction. Phys. Rev. Lett. 101, 107005 (2008).
Szombati, D. B. et al. Josephson φ0-junction in nanowire quantum dots. Nat. Phys. 12, 568–572 (2016).
Liu, J.-F. & Chan, K. S. Relation between symmetry breaking and the anomalous Josephson effect. Phys. Rev. B 82, 125305 (2010).
Rasmussen, A. et al. Effects of spin–orbit coupling and spatial symmetries on the Josephson current in SNS junctions. Phys. Rev. B 93, 155406 (2016).
Konschelle, F., Tokatly, I. V. & Bergeret, F. S. Theory of the spin-galvanic effect and the anomalous phase shift φ0 in superconductors and Josephson junctions with intrinsic spin–orbit coupling. Phys. Rev. B 92, 125443 (2015).
Villegas, J. E. et al. A superconducting reversible rectifier that controls the motion of magnetic flux quanta. Science 302, 1188–1191 (2003).
Reynoso, A. A., Usaj, G., Balseiro, C. A., Feinberg, D. & Avignon, M. Anomalous Josephson current in junctions with spin polarizing quantum point contacts. Phys. Rev. Lett. 101, 107001 (2008).
van Woerkom, D. J. et al. Microwave Spectroscopy of Spinful Andreev Bound States in Ballistic Semiconductor Josephson Junctions (QuTech, 2017); http://doi.org/b6xg
Acknowledgements
The authors thank L. Bretheau, Ç. Ö. Girit, L. DiCarlo, M. P. Nowak and A. R. Akhmerov for fruitful discussions, and R. van Gulik, T. Kriváchy, A. Bruno, N. de Jong, J. D. Watson, M. C. Cassidy, R. N. Schouten and T. S. Jespersen for assistance with fabrication and experiments. This work has been supported by the Danish National Research Foundation, the Villum Foundation, the Dutch Organization for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO) by a Veni grant, Microsoft Corporation Station Q and a Synergy Grant of the European Research Council. B.v.H. was supported by ONR Grant Q00704. L.I.G. and J.I.V. acknowledge the support by NSF Grant DMR-1603243.
Author information
Authors and Affiliations
Contributions
D.J.v.W., A.P. and D.B. performed the experiments. B.v.H., J.I.V. and L.I.G. developed the theory to analyse the data. P.K. and J.N. contributed to the nanowire growth. D.J.v.W., A.P. and D.B. fabricated the samples. L.P.K. and A.G. designed and supervised the experiments. D.J.v.W., B.v.H., L.P.K. and A.G. analysed the data. The manuscript has been prepared with contributions from all the authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 2207 kb)
Rights and permissions
About this article
Cite this article
van Woerkom, D., Proutski, A., van Heck, B. et al. Microwave spectroscopy of spinful Andreev bound states in ballistic semiconductor Josephson junctions. Nature Phys 13, 876–881 (2017). https://doi.org/10.1038/nphys4150
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys4150
This article is cited by
-
Microwave spectroscopy of Andreev states in InAs nanowire-based hybrid junctions using a flip-chip layout
Communications Physics (2022)
-
Experimental review on Majorana zero-modes in hybrid nanowires
Science China Physics, Mechanics & Astronomy (2021)
-
Continuous monitoring of a trapped superconducting spin
Nature Physics (2020)
-
Photon-assisted tunnelling of zero modes in a Majorana wire
Nature Physics (2020)
-
From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires
Nature Reviews Physics (2020)