Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large orbital polarization in a metallic square-planar nickelate

Abstract

High-temperature cuprate superconductivity remains a defining problem in condensed-matter physics. Among myriad approaches to addressing this problem has been the study of alternative transition metal oxides with similar structures and 3d electron count that are suggested as proxies for cuprate physics. None of these analogues has been superconducting, and few are even metallic. Here, we report that the low-valent, quasi-two-dimensional trilayer compound Pr4Ni3O8 avoids a charge-stripe-ordered phase previously reported for La4Ni3O8, leading to a metallic ground state. X-ray absorption spectroscopy shows that metallic Pr4Ni3O8 exhibits a low-spin configuration with significant orbital polarization and pronounced d x 2 - y 2 character in the unoccupied states above the Fermi energy, a hallmark of the cuprate superconductors. Density functional theory calculations corroborate this finding, and reveal that the d x 2 - y 2 orbital dominates the near-Ef occupied states as well. Belonging to a regime of 3d electron count found for hole-doped cuprates, Pr4Ni3O8 thus represents one of the closest analogues to cuprates yet reported and a singularly promising candidate for high-Tc superconductivity if electron doping could be achieved.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Orbital polarization of R4Ni3O8 (R = La, Pr).
Figure 2: Temperature-dependent XAS and DFT band structure of La4Ni3O8.
Figure 3: Oxygen K edge XAS and physical properties of La4Ni3O8 and Pr4Ni3O8.
Figure 4: Schematic electronic phase diagram of quasi-two-dimensional (quasi-2D) nickelates and hole-doped cuprates presented as a function of the nominal 3d electron count.

Similar content being viewed by others

References

  1. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  ADS  Google Scholar 

  2. Tranquada, J. M. Spins, stripes, and superconductivity in hole-doped cuprates. AIP Conf. Proc. 1550, 114–187 (2013).

    Article  ADS  Google Scholar 

  3. Mitchell, J. F. Sr2IrO4: gateway to cuprate superconductivity? APL Mater. 3, 062404 (2015).

    Article  ADS  Google Scholar 

  4. Chaloupka, J. & Khaliullin, G. Orbital order and possible superconductivity in LaNiO3/LaMO3 superlattices. Phys. Rev. Lett. 100, 016404 (2008).

    Article  ADS  Google Scholar 

  5. Kim, Y. K. et al. Fermi arcs in a doped pseudospin-1/2 Heisenberg antiferromagnet. Science 345, 187–190 (2014).

    Article  ADS  Google Scholar 

  6. Wang, F. & Senthil, T. Twisted Hubbard model for Sr2IrO4: magnetism and possible high temperature superconductivity. Phys. Rev. Lett. 106, 136402 (2011).

    Article  ADS  Google Scholar 

  7. Kim, Y. K., Sung, N. H., Denlinger, J. D. & Kim, B. J. Observation of a d-wave gap in electron-doped Sr2IrO4 . Nat. Phys. 12, 37–41 (2016).

    Article  Google Scholar 

  8. Yan, Y. J. et al. Electron-doped Sr2IrO4: an analogue of hole-doped cuprate superconductors demonstrated by scanning tunneling microscopy. Phys. Rev. X 5, 041018 (2015).

    Google Scholar 

  9. Uchida, M. et al. Pseudogap of metallic layered nickelate R2−xSrxNiO4 (R = Nd, Eu) crystals measured using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 106, 027001 (2011).

    Article  ADS  Google Scholar 

  10. Anisimov, V. I., Bukhvalov, D. & Rice, T. M. Electronic structure of possible nickelate analogs to the cuprates. Phys. Rev. B 59, 7901–7906 (1999).

    Article  ADS  Google Scholar 

  11. Lee, K. W. & Pickett, W. E. Infinite-layer LaNiO2: Ni+ is not Cu2+. Phys. Rev. B 70, 165109 (2004).

    Article  ADS  Google Scholar 

  12. Zhang, J. et al. Stacked charge stripes in the quasi-2D trilayer nickelate La4Ni3O8 . Proc. Natl Acad. Sci. USA 113, 8945–8950 (2016).

    Article  ADS  Google Scholar 

  13. Lacorre, P. Passage from T-type to T′-type arrangement by reducing R4Ni3O10 to R4Ni3O8 (R = La, Pr, Nd). J. Solid State Chem. 97, 495–500 (1992).

    Article  ADS  Google Scholar 

  14. Poltavets, V. V. et al. Bulk magnetic order in a two-dimensional Ni1+/Ni2+ (d9/d8) nickelate, isoelectronic with superconducting cuprates. Phys. Rev. Lett. 104, 206403 (2010).

    Article  ADS  Google Scholar 

  15. Pardo, V. & Pickett, W. E. Pressure-induced metal-insulator and spin-state transition in low-valence layered nickelates. Phys. Rev. B 85, 045111 (2012).

    Article  ADS  Google Scholar 

  16. Pardo, V. & Pickett, W. E. Quantum confinement induced molecular correlated insulating state in La4Ni3O8 . Phys. Rev. Lett. 105, 266402 (2010).

    Article  ADS  Google Scholar 

  17. Botana, A. S., Pardo, V., Pickett, W. E. & Norman, M. R. Charge ordering in Ni1+/Ni2+ nickelates: La4Ni3O8 and La3Ni2O6 . Phys. Rev. B 94, 081105(R) (2016).

    Article  ADS  Google Scholar 

  18. Benckiser, E. et al. Orbital reflectometry of oxide heterostructures. Nat. Mater. 10, 189–193 (2011).

    Article  ADS  Google Scholar 

  19. Hawthorn, D. G. et al. Resonant elastic soft X-ray scattering in oxygen-ordered YBa2Cu3O6+δ . Phys. Rev. B 84, 075125 (2011).

    Article  ADS  Google Scholar 

  20. Eskes, H. & Sawatzky, G. A. Single-, triple-, or multiple-band Hubbard models. Phys. Rev. B 44, 9656–9666 (1991).

    Article  ADS  Google Scholar 

  21. Kuiper, P. et al. Polarization-dependent nickel 2p X-ray-absorption spectra of La2NiO4+δ . Phys. Rev. B 57, 1552–1557 (1998).

    Article  ADS  Google Scholar 

  22. Disa, A. S., Walker, F. J., Ismail-Beigi, S. & Ahn, C. H. Research update: orbital polarization in LaNiO3-based heterostructures. APL Mater. 3, 062303 (2015).

    Article  ADS  Google Scholar 

  23. Hu, Z. et al. Hole distribution between the Ni 3d and O 2p orbitals in Nd2−xSrxNiO4−δ . Phys. Rev. B 61, 3739–3744 (2000).

    Article  ADS  Google Scholar 

  24. Cooper, R. A. et al. Anomalous criticality in the electrical resistivity of La2−x SrxCuO4 . Science 323, 603–607 (2009).

    Article  ADS  Google Scholar 

  25. Kajimoto, R., Ishizaka, K., Yoshizawa, H. & Tokura, Y. Spontaneous rearrangement of the checkerboard charge order to stripe order in La1.5Sr0.5NiO4 . Phys. Rev. B 67, 014511 (2003).

    Article  ADS  Google Scholar 

  26. Ishizaka, K., Taguchi, Y., Kajimoto, R., Yoshizawa, H. & Tokura, Y. Charge ordering and charge dynamics in Nd2−xSrxNiO4 (0.33 ≤ x ≤ 0.7). Phys. Rev. B 67, 184418 (2003).

    Article  ADS  Google Scholar 

  27. Uchida, M. et al. Pseudogap-related charge dynamics in the layered nickelate R2−xSrxNiO4 (x 1). Phys. Rev. B 86, 165126 (2012).

    Article  ADS  Google Scholar 

  28. Cheng, J. G. et al. Pressure effect on the structural transition and suppression of the high-spin state in the triple-layer T′-La4Ni3O8 . Phys. Rev. Lett. 108, 236403 (2012).

    Article  ADS  Google Scholar 

  29. Ylvisaker, E. R., Pickett, W. E. & Koepernik, K. Anisotropy and magnetism in the LSDA+U method. Phys. Rev. B 79, 035103 (2009).

    Article  ADS  Google Scholar 

  30. García-Muñoz, J. L. et al. Valence transition in (Pr, Ca)CoO3 cobaltites: charge migration at the metal-insulator transition. Phys. Rev. B 84, 045104 (2011).

    Article  ADS  Google Scholar 

  31. Gozar, A. et al. High-temperature interface superconductivity between metallic and insulating copper oxides. Nature 455, 782–785 (2008).

    Article  ADS  Google Scholar 

  32. Poltavets, V. V., Greenblatt, M., Fecher, G. H. & Felser, C. Electronic properties, band structure, and Fermi surface instabilities of Ni1+/Ni2+ nickelate La3Ni2O6, isoelectronic with superconducting cuprates. Phys. Rev. Lett. 102, 046405 (2009).

    Article  ADS  Google Scholar 

  33. Hayward, M. A., Green, M. A., Rosseinsky, M. J. & Sloan, J. Sodium hydride as a powerful reducing agent for topotactic oxide deintercalation: synthesis and characterization of the nickel(I) oxide LaNiO2 . J. Am. Chem. Soc. 121, 8843–8854 (1999).

    Article  Google Scholar 

  34. Wu, G. Q., Neumeier, J. J. & Hundley, M. F. Magnetic susceptibility, heat capacity, and pressure dependence of the electrical resistivity of La3Ni2O7 and La4Ni3O10 . Phys. Rev. B 63, 245120 (2001).

    Article  ADS  Google Scholar 

  35. Seo, D. K., Liang, W., Whangbo, M. H., Zhang, Z. & Greenblatt, M. Electronic band structure and Madelung potential study of the nickelates La2NiO4, La3Ni2O7, and La4Ni3O10 . Inorg. Chem. 35, 6396–6400 (1996).

    Article  Google Scholar 

  36. Lee, J. H. et al. Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy. Nat. Mater. 13, 879–883 (2014).

    Article  ADS  Google Scholar 

  37. Schwarz, K. & Blaha, P. Solid state calculations using WIEN2k. Comput. Mater. Sci. 28, 259–273 (2003).

    Article  Google Scholar 

  38. Sjöstedt, E., Nordström, L. & Singh, D. J. An alternative way of linearizing the augmented plane-wave method. Solid State Commun. 114, 15–20 (2000).

    Article  ADS  Google Scholar 

  39. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  40. Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: orbital ordering in Mott–Hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995).

    Article  ADS  Google Scholar 

  41. Petukhov, A. G., Mazin, I. I., Chioncel, L. & Lichtenstein, A. I. Correlated metals and the LDA+U method. Phys. Rev. B 67, 153106 (2003).

    Article  ADS  Google Scholar 

  42. Czyżyk, M. T. & Sawatzky, G. A. Local-density functional and on-site correlations: the electronic structure of La2CuO4 and LaCuO3 . Phys. Rev. B 49, 14211–14228 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Crystal growth, characterization, and theoretical calculations were supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. V.P. acknowledges support from X. de Galicia via EM2013/037 and MINECO through MAT2013-44673-R and Ramon y Cajal Program under Grant no. RyC2011-09024. ChemMatCARS Sector 15 is supported by the National Science Foundation under grant number NSF/CHE-1346572. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors thank Y.-S. Chen for his help with single-crystal X-ray diffraction at 15-ID-B, S. Lapidus for his help with the high-resolution X-ray powder diffraction at 11-BM, and W. E. Pickett, Y.-S. Chen and Y. Ren for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.F.M. and J.Z. directed the project. J.Z. and H.Z. grew single crystals. J.Z. and D.P. performed the transport measurements. J.Z. performed the powder and single-crystal synchrotron X-ray diffraction experiments. J.W.F. and J.Z. performed the XAS experiments. J.W.F., J.Z. and M.R.N. analysed data. A.S.B. and V.P. performed DFT calculations. J.Z., A.S.B., J.W.F. and J.F.M. wrote the manuscript, with contributions from all coauthors.

Corresponding author

Correspondence to Junjie Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2308 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Botana, A., Freeland, J. et al. Large orbital polarization in a metallic square-planar nickelate. Nature Phys 13, 864–869 (2017). https://doi.org/10.1038/nphys4149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing