Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct measurement of polariton–polariton interaction strength

Abstract

Exciton–polaritons in a microcavity are composite two-dimensional bosonic quasiparticles, arising from the strong coupling between confined light modes in a resonant planar optical cavity and excitonic transitions. Quantum phenomena such as Bose–Einstein condensation, superfluidity, quantized vortices, and macroscopic quantum states have been realized at temperatures from tens of kelvin up to room temperatures. Crucially, many of these effects of exciton–polaritons depend on the polariton–polariton interaction strength. Despite the importance of this parameter, it has been difficult to make an accurate experimental measurement, mostly because of the difficulty in determining the absolute densities of polaritons and bare excitons. Here we report a direct measurement of the polariton–polariton interaction strength in a very high-Q microcavity structure. By allowing polaritons to propagate over 20 μm to the centre of a laser-generated annular trap, we are able to separate the polariton–polariton interactions from polariton–exciton interactions. The interaction strength is deduced from the energy renormalization of the polariton dispersion as the polariton density is increased, using the polariton condensation as a benchmark for the density. We find that the interaction strength is about two orders of magnitude larger than previous theoretical estimates, putting polaritons in the strongly interacting regime.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of an annular trap in a GaAs microcavity.
Figure 2: Emission spectra at different polariton densities.
Figure 3: Blue shifts at various detunings.
Figure 4: Polariton–polariton interaction strength.
Figure 5: Saturation of blue shift.

Similar content being viewed by others

References

  1. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  2. Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    Article  ADS  Google Scholar 

  3. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).

    Article  Google Scholar 

  4. Lagoudakis, K. G. et al. Quantized vortices in an exciton–polariton condensate. Nat. Phys. 4, 706–710 (2008).

    Article  Google Scholar 

  5. Lagoudakis, K. G. et al. Observation of half-quantum vortices in an exciton–polariton condensate. Science 326, 974–976 (2009).

    Article  ADS  Google Scholar 

  6. Sanvitto, D. et al. Persistent currents and quantized vortices in a polariton superfluid. Nat. Phys. 6, 527–533 (2010).

    Article  Google Scholar 

  7. Nardin, G. et al. Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid. Nat. Phys. 7, 635–641 (2011).

    Article  Google Scholar 

  8. Tosi, G. et al. Geometrically locked vortex lattices in semiconductor quantum fluids. Nat. Commun. 3, 1243 (2012).

    Article  ADS  Google Scholar 

  9. Dreismann, A. et al. Coupled counterrotating polariton condensates in optically defined annular potentials. Proc. Natl Acad. Sci. USA 111, 8770–8775 (2014).

    Article  ADS  Google Scholar 

  10. Liu, G., Snoke, D. W., Daley, A., Pfeiffer, L. N. & West, K. A new type of half-quantum circulation in a macroscopic polariton spinor ring condensate. Proc. Natl Acad. Sci. USA 112, 2676–2681 (2015).

    Article  ADS  Google Scholar 

  11. Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).

    Article  ADS  Google Scholar 

  12. Kena-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photon. 4, 371–375 (2010).

    Article  ADS  Google Scholar 

  13. Plumhof, J. D., Stoferle, T., Mai, L., Scherf, U. & Mahrt, R. F. Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer. Nat. Mater. 13, 247–252 (2014).

    Article  ADS  Google Scholar 

  14. Steger, M. et al. Long-range ballistic motion and coherent flow of long-lifetime polaritons. Phys. Rev. B 88, 235314 (2013).

    Article  ADS  Google Scholar 

  15. Steger, M., Gautham, C., Snoke, D. W., Pfeiffer, L. & West, K. Slow reflection and two-photon generation of microcavity exciton–polaritons. Optica 2, 1–5 (2015).

    Article  ADS  Google Scholar 

  16. Zhugayevych, A. & Tretiak, S. Theoretical description of structural and electronic properties of organic photovoltaic materials. Annu. Rev. Phys. Chem. 66, 305–330 (2015).

    Article  ADS  Google Scholar 

  17. Snoke, D. in Exciton–Polaritons in Microcavities Vol. 172 (eds Timofeev, V. & Sanvitto, D.) (Springer Series in Solid State Sciences, Springer, 2012).

    Google Scholar 

  18. Tassone, F. & Yamamoto, Y. Exciton–exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B 59, 10830–10842 (1999).

    Article  ADS  Google Scholar 

  19. Prokof’ev, N., Ruebenacker, O. & Svistunov, B. Critical point of a weakly interacting two-dimensional Bose gas. Phys. Rev. Lett. 87, 270402 (2001).

    Article  Google Scholar 

  20. Prokof’ev, N. & Svistunov, B. Two-dimensional weakly interacting Bose gas in the fluctuation region. Phys. Rev. A 66, 043608 (2002).

    Article  ADS  Google Scholar 

  21. Amo, A. et al. Exciton–polariton spin switches. Nat. Photon. 4, 361–366 (2010).

    Article  ADS  Google Scholar 

  22. Antón, C. et al. Optical control of spin textures in quasi-one-dimensional polariton condensates. Phys. Rev. B 91, 075305 (2015).

    Article  ADS  Google Scholar 

  23. Sich, M. et al. Effects of spin-dependent interactions on polarization of bright polariton solitons. Phys. Rev. Lett. 112, 046403 (2014).

    Article  ADS  Google Scholar 

  24. Sekretenko, A. V., Gavrilov, S. S. & Kulakovskii, V. D. Polariton–polariton interactions in microcavities under a resonant 10 to 100 picosecond pulse excitation. Phys. Rev. B 88, 195302 (2013).

    Article  ADS  Google Scholar 

  25. Takemura, N., Trebaol, S., Wouters, M., Portella-Oberli, M. T. & Deveaud-Pledran, B. Heterodyne spectroscopy of polariton spinor interactions. Phys. Rev. B 90, 195307 (2014).

    Article  ADS  Google Scholar 

  26. Wertz, E. et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys. 6, 860–864 (2010).

    Article  Google Scholar 

  27. Tosi, G. et al. Sculpting oscillators with light within a nonlinear quantum fluid. Nat. Phys. 8, 190–194 (2012).

    Article  Google Scholar 

  28. Cristofolini, P. et al. Optical superfluid phase transitions and trapping of polariton condensates. Phys. Rev. Lett. 110, 186403 (2013).

    Article  ADS  Google Scholar 

  29. Askitopoulos, A. et al. Polariton condensation in an optically induced two-dimensional potential. Phys. Rev. B 88, 041308 (2013).

    Article  ADS  Google Scholar 

  30. Askitopoulos, A. et al. Robust platform for engineering pure-quantum-state transitions in polariton condensates. Phys. Rev. B 92, 035305 (2015).

    Article  ADS  Google Scholar 

  31. Sun, Y. et al. Bose–Einstein condensation of long-lifetime polaritons in thermal equilibrium. Phys. Rev. Lett. 118, 016602 (2017).

    Article  ADS  Google Scholar 

  32. Sun, Y. et al. Stable switching among high-order modes in polariton condensates. Preprint at http://arXiv.org/abs/1602.03024 (2016).

  33. Nelsen, B. et al. Dissipationless flow and sharp threshold of a polariton condensate with long lifetime. Phys. Rev. X 3, 041015 (2013).

    Google Scholar 

  34. Zimmermann, R. Dynamical T-matrix theory for high-density excitons in coupled quantum wells. Phys. Stat. Solidi. b 243, 2358–2362 (2006).

    Article  ADS  Google Scholar 

  35. Ciuti, C., Savona, V. & Quattropani, A. Role of the exchange of carriers in elastic exciton–exciton scattering in quantum wells. Phys. Rev. B 58, 7926 (1998).

    Article  ADS  Google Scholar 

  36. Pavlovic, G. Exciton–Polaritons in Low Dimensional Structures PhD thesis, Université Blaise Pascal - Clermont-Ferrand (2010).

  37. Takemura, N., Trebaol, S., Wouters, M., Portella-Oberli, M. T. & Deveaud, B. Polaritonic feshbach resonance. Nat. Phys. 10, 500–504 (2014).

    Article  Google Scholar 

  38. Marchetti, F. M., Keeling, J., Szymańska, M. H. & Littlewood, P. B. Thermodynamics and excitations of condensed polaritons in disordered microcavities. Phys. Rev. Lett. 96, 066405 (2006).

    Article  ADS  Google Scholar 

  39. Marchetti, F. M., Keeling, J., Szymańska, M. H. & Littlewood, P. B. Absorption, photoluminescence, and resonant Rayleigh scattering probes of condensed microcavity polaritons. Phys. Rev. B 76, 115326 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Daley and D. Pekker for fruitful discussions and J. Beaumarriage for assistance in the calibration of the detuning map of the sample. Y.S., Y.Y. and K.A.N. were supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001088. M.S., G.L. and D.W.S. were supported by the National Science Foundation under grants PHY-1205762 and DMR-1104383. L.N.P. and K.W. were funded by the Gordon and Betty Moore Foundation through the EPiQS initiative Grant GBMF4420, and by the National Science Foundation MRSEC Grant DMR-1420541.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. and D.W.S. designed the experiments; Y.S. performed the experiment; Y.S. and D.W.S. analysed the data; Y.S., Y.Y. and M.S. calibrated the detuning map of the sample; L.N.P. and K.W. grew the microcavity structure; all the authors participated in the discussion of the results and manuscript preparation.

Corresponding authors

Correspondence to Yongbao Sun or David W. Snoke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Yoon, Y., Steger, M. et al. Direct measurement of polariton–polariton interaction strength. Nature Phys 13, 870–875 (2017). https://doi.org/10.1038/nphys4148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing