Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spin-polarized exciton quantum beating in hybrid organic–inorganic perovskites

Abstract

Hybrid organic–inorganic perovskites have emerged as a new class of semiconductors that exhibit excellent performance as active layers in photovoltaic solar cells. These compounds are also highly promising materials for the field of spintronics due to their large and tunable spin–orbit coupling, spin-dependent optical selection rules, and their predicted electrically tunable Rashba spin splitting. Here we demonstrate the optical orientation of excitons and optical detection of spin-polarized exciton quantum beating in polycrystalline films of the hybrid perovskite CH3NH3PbClxI3−x. Time-resolved Faraday rotation measurement in zero magnetic field reveals unexpectedly long spin lifetimes exceeding 1 ns at 4 K, despite the large spin–orbit couplings of the heavy lead and iodine atoms. The quantum beating of exciton states in transverse magnetic fields shows two distinct frequencies, corresponding to two g-factors of 2.63 and −0.33, which we assign to electrons and holes, respectively. These results provide a basic picture of the exciton states in hybrid perovskites, and suggest they hold potential for spintronic applications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Optical transitions in the perovskites and schematic of pump–probe measurement.
Figure 2: Spin dynamics and coherence in perovskites measured by TRFR at 4 K.
Figure 3: Magnetic field dependence of the exciton energy levels and beat frequencies.
Figure 4: Energy dependence of the Faraday rotation in CH3NH3PbClxI3−x films.
Figure 5: Temperature dependence of the spin lifetimes and g-factors in CH3NH3PbClxI3−x films.

References

  1. Datta, S. & Das, B. Electronic analog of the eletro-optic modulator. App. Phys. Lett. 56, 665–667 (1990).

    Article  ADS  Google Scholar 

  2. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  ADS  Google Scholar 

  3. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  ADS  Google Scholar 

  4. Awschalom, D. D. & Flatté, M. E. Challenges for semiconductor spintronics. Nat. Phys. 3, 153–159 (2007).

    Article  Google Scholar 

  5. Kikkawa, J. M. & Awschalom, D. D. Lateral drag of spin coherence in gallium arsenide. Nature 397, 139–141 (1999).

    Article  ADS  Google Scholar 

  6. Rashba, E. I. Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, R16267–R16270 (2000).

    Article  ADS  Google Scholar 

  7. Hanbicki, A. T., Jonker, B. T., Itskos, G., Kioseoglou, G. & Petrou, A. Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor. App. Phys. Lett. 80, 1240–1242 (2002).

    Article  ADS  Google Scholar 

  8. Yu, Z. G. & Flatté, M. E. Spin diffusion and injection in semiconductor structures: electric field effects. Phys. Rev. B 66, 235302 (2002).

    Article  ADS  Google Scholar 

  9. Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices. Nat. Phys. 3, 197–202 (2007).

    Article  Google Scholar 

  10. Hall, K. C. & Flatté, M. E. Performance of a spin-based insulated gate field effect transistor. App. Phys. Lett. 88, 162503 (2006).

    Article  ADS  Google Scholar 

  11. Koo, H. C. et al. Control of spin precession in a spin-injected field effect transistor. Science 325, 1515–1518 (2009).

    Article  ADS  Google Scholar 

  12. Betthausen, C. et al. Spin-transistor action via tunable Landau–Zener transitions. Science 337, 324–327 (2012).

    Article  ADS  Google Scholar 

  13. Chuang, P. et al. All-electric all-semiconductor spin field-effect transistors. Nat. Nanotech. 10, 35–39 (2015).

    Article  ADS  Google Scholar 

  14. Jansen, R. Silicon spintronics. Nat. Mater. 11, 400–408 (2012).

    Article  ADS  Google Scholar 

  15. Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotech. 9, 794–807 (2014).

    Article  ADS  Google Scholar 

  16. Dobrovitski, V. V., Fuchs, G. D., Falk, A. L., Santori, C. & Awschalom, D. D. Quantum control over single spins in diamond. Annu. Rev. Condens. Matter Phys. 4, 23–50 (2013).

    Article  ADS  Google Scholar 

  17. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  ADS  Google Scholar 

  18. van den Berg, J. W. G. et al. Fast spin-orbit qubit in an indium antimonide nanowire. Phys. Rev. Lett. 110, 066806 (2013).

    Article  ADS  Google Scholar 

  19. Kimura, T., Otani, Y., Sato, T., Takahashi, S. & Maekawa, S. Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98, 156601 (2007).

    Article  ADS  Google Scholar 

  20. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  Google Scholar 

  21. National renewable energy labs (NREL) efficiency chart (2017); https://www.nrel.gov/pv/assets/images/efficiency-chart.png

  22. Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotech. 9, 687–692 (2014).

    Article  ADS  Google Scholar 

  23. Dou, L. et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014).

    Article  ADS  Google Scholar 

  24. Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).

    Article  ADS  Google Scholar 

  25. Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotech. 10, 391–402 (2015).

    Article  ADS  Google Scholar 

  26. Kim, M., Im, J., Freeman, A. J., Ihm, J. & Jin, H. Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites. Proc. Natl Acad. Sci. USA 111, 6900–6904 (2014).

    Article  ADS  Google Scholar 

  27. Giovanni, D. et al. Highly spin-polarized carrier dynamics and ultralarge photoinduced magnetization in CH3NH3PbI3 perovskite thin films. Nano Lett. 15, 1553–1558 (2015).

    Article  ADS  Google Scholar 

  28. Zhang, C. et al. Magnetic field effects in hybrid perovskite devices. Nat. Phys. 11, 427–434 (2015).

    Article  Google Scholar 

  29. Niesner, D. et al. Giant Rashba splitting in CH3NH3PbBr3 organic–inorganic perovskite. Phys. Rev. Lett. 117, 126401 (2016).

    Article  ADS  Google Scholar 

  30. Sun, D. et al. Spintronics of organometal trihalide perovskites. Preprint at http://arXiv.org/abs/1608.00993 (2016).

  31. Kepenekian, M. et al. Rashba and Dresselhaus effects in hybrid organic–inorganic perovskites: from basics to devices. ACS Nano 9, 11557–11567 (2015).

    Article  Google Scholar 

  32. Yu, H. et al. The role of chlorine in the formation process of CH3NH3PbI3−xClx perovskite. Adv. Funct. Mater. 24, 7102–7108 (2014).

    Google Scholar 

  33. Zhai, Y., Sheng, C. X., Zhang, C. & Vardeny, Z. V. Ultrafast spectroscopy of photoexcitations in organometal trihalide perovskites. Adv. Funct. Mater. 26, 1617–1627 (2016).

    Article  Google Scholar 

  34. Wang, Q. et al. Qualifying composition dependent p and n self-doping in CH3NH3PbI3 . App. Phys. Lett. 105, 163508 (2014).

    Article  ADS  Google Scholar 

  35. Wehrenfennig, C., Liu, M., Snaith, H. J., Johnston, M. B. & Herz, L. M. Charge carrier recombination channels in the low-temperature phase of organic–inorganic lead halide perovskite thin films. APL Mater. 2, 081513 (2014).

    Article  ADS  Google Scholar 

  36. D’Innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014).

    Article  ADS  Google Scholar 

  37. Miyata, A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11, 582–587 (2015).

    Article  Google Scholar 

  38. Even, J., Pedesseau, L., Jancu, J.-M. & Katan, C. Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 4, 2999–3005 (2013).

    Article  Google Scholar 

  39. Gupta, J. A., Awschalom, D. D., Efros, A. L. & Rodina, A. V. Spin dynamics in semiconductor nanocrystals. Phys. Rev. B 66, 125307 (2002).

    Article  ADS  Google Scholar 

  40. Baikie, T. et al. Synthesis and crystal chemistry of the hybrid perovskite CH3NH3PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628–5641 (2013).

    Article  Google Scholar 

  41. Yu, Z. G. Effective-mass model and magneto-optical properties in hybrid perovskites. Sci. Rep. 6, 28576 (2016).

    Article  ADS  Google Scholar 

  42. Fu, H., Wang, L.-W. & Zunger, A. Excitonic exchange splitting in bulk semiconductors. Phys. Rev. B 59, 5568–5574 (1999).

    Article  ADS  Google Scholar 

  43. van Kesteren, H. W., Cosman, E. C., van der Poel, W. A. J. A. & Foxon, C. T. Fine structure of excitons in type-II GaAs/AlAs quantum wells. Phys. Rev. B 41, 5283–5292 (1990).

    Article  ADS  Google Scholar 

  44. Ma, J. & Wang, L.-W. Nanoscale charge localization induced by random orientations of organic molecules in hybrid perovskite CH3NH3PbI3 . Nano Lett. 15, 248–253 (2015).

    Article  ADS  Google Scholar 

  45. March, S. A. et al. Four-wave mixing in perovskite photovoltaic materials reveals long dephasing times and weaker many-body interactions than GaAs. Preprint at http://arXiv.org/abs/1602.05186v2 (2016).

  46. Yugova, I. A. et al. Exciton fine structure in InGaAs/GaAs quantum dots revisited by pump–probe Faraday rotation. Phys. Rev. B 75, 195325 (2007).

    Article  ADS  Google Scholar 

  47. Kikkawa, J. M. & Awschalom, D. D. Resonant spin amplification in n-type GaAs. Phys. Rev. Lett. 80, 4313–4316 (1998).

    Article  ADS  Google Scholar 

  48. Crooker, S. A., Cheng, L. & Smith, D. L. Spin noise of conduction electrons in n-type bulk GaAs. Phys. Rev. B 79, 035208 (2009).

    Article  ADS  Google Scholar 

  49. Brenner, T. M. et al. Are mobilities in hybrid organic–inorganic halide perovskites actually “high”? J. Phys. Chem. Lett. 6, 4754–4757 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge M. Raikh and E. Ehrenfreund for helpful discussions. This work is mainly supported by a start-up grant from University of Utah (Low temperature ultrafast and CW optics measurement systems), and in part by the DOE, Office of Science, grant DE-SC0014579 (ultrafast laser, perovskite film synthesis and evaluation). We also acknowledge the NSF Material Science and Engineering Center at the University of Utah (DMR-1121252) for supporting the perovskite growth and device preparation facilities.

Author information

Authors and Affiliations

Authors

Contributions

Y.S.L. conceived and supervised the experiments. P.O., W.T., N.G. and R.W. performed the optical measurements and analysed the data. R.W., C.Z. and D.S. prepared the samples, and characterized the crystal structure and morphology of the samples. Z.-G.Y. provided theoretical description of the exciton states. P.O., N.G. and Y.S.L. wrote the paper in consultation with Z.-G.Y. and Z.V.V. All authors commented on the manuscript.

Corresponding author

Correspondence to Yan S. Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 784 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Odenthal, P., Talmadge, W., Gundlach, N. et al. Spin-polarized exciton quantum beating in hybrid organic–inorganic perovskites. Nature Phys 13, 894–899 (2017). https://doi.org/10.1038/nphys4145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4145

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing