Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlled release of multiphoton quantum states from a microwave cavity memory

Abstract

Signal transmission loss in a quantum network can be overcome by encoding quantum states in complex multiphoton fields. But transmitting quantum information encoded in this way requires that locally stored states can be converted to propagating fields. Here we experimentally show the controlled conversion of multiphoton quantum states, such as Schrödinger cat states, from a microwave cavity quantum memory into propagating modes. By parametric conversion using the nonlinearity of a single Josephson junction, we can release the cavity state in 500 ns, about three orders of magnitude faster than its intrinsic lifetime. This mechanism—which we dub Schrödinger’s catapult—faithfully converts arbitrary cavity fields to travelling signals with an estimated efficiency of >90%, enabling the on-demand generation of complex itinerant quantum states. Importantly, the release process can be precisely controlled on fast timescales, allowing us to generate entanglement between the cavity and the travelling mode by partial conversion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nodes in a quantum network using high-Q cavities as memories.
Figure 2: Cavity damping by mode-conversion.
Figure 3: Travelling multiphoton quantum states.
Figure 4: Generating entanglement between stationary and travelling fields.

Similar content being viewed by others

References

  1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  2. Nickerson, N. H., Li, Y. & Benjamin, S. C. Topological quantum computing with a very noisy network and local error rates approaching one percent. Nat. Commun. 4, 1756 (2013).

    Article  ADS  Google Scholar 

  3. Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    Article  ADS  Google Scholar 

  4. Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 1–16 (2014).

    Article  Google Scholar 

  5. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article  ADS  Google Scholar 

  6. Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).

    Article  ADS  Google Scholar 

  7. Monroe, C., Meekhof, D. M., King, B. E. & Wineland, D. J. A “Schrodinger Cat” superposition state of an atom. Science 272, 1131–1136 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  8. Signoles, A. et al. Confined quantum Zeno dynamics of a watched atomic arrow. Nat. Phys. 10, 715–719 (2014).

    Article  Google Scholar 

  9. McConnell, R., Zhang, H., Hu, J., Ćuk, S. & Vuletić, V. Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon. Nature 519, 439–442 (2015).

    Article  ADS  Google Scholar 

  10. Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J. & Grangier, P. Generating optical Schrödinger kittens for quantum information processing. Science 312, 83–86 (2006).

    Article  ADS  Google Scholar 

  11. Neergaard-Nielsen, J. S., Nielsen, B. M., Hettich, C., Mølmer, K. & Polzik, E. S. Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604 (2006).

    Article  ADS  Google Scholar 

  12. Deléglise, S. et al. Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455, 510–514 (2008).

    Article  ADS  Google Scholar 

  13. Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009).

    Article  ADS  Google Scholar 

  14. Kirchmair, G. et al. Observation of quantum state collapse and revival due to the single-photon Kerr effect. Nature 495, 205–209 (2013).

    Article  ADS  Google Scholar 

  15. Bretheau, L., Campagne-Ibarcq, P., Flurin, E., Mallet, F. & Huard, B. Quantum dynamics of an electromagnetic mode that cannot contain N photons. Science 348, 776–779 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  16. Reagor, M. et al. Quantum memory with millisecond coherence in circuit QED. Phys. Rev. B 94, 014506 (2016).

    Article  ADS  Google Scholar 

  17. Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    Article  ADS  Google Scholar 

  18. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

  19. Houck, A. A. et al. Generating single microwave photons in a circuit. Nature 449, 328–331 (2007).

    Article  ADS  Google Scholar 

  20. Eichler, C., Bozyigit, D. & Wallraff, A. Characterizing quantum microwave radiation and its entanglement with superconducting qubits using linear detectors. Phys. Rev. A 86, 032106 (2012).

    Article  ADS  Google Scholar 

  21. Srinivasan, S. J. et al. Time-reversal symmetrization of spontaneous emission for quantum state transfer. Phys. Rev. A 89, 033857 (2014).

    Article  ADS  Google Scholar 

  22. Pechal, M. et al. Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics. Phys. Rev. X 4, 1–9 (2014).

    Google Scholar 

  23. Yin, Y. et al. Catch and release of microwave photon states. Phys. Rev. Lett. 110, 107001 (2013).

    Article  ADS  Google Scholar 

  24. Pierre, M., Svensson, I.-M., Raman Sathyamoorthy, S., Johansson, G. & Delsing, P. Storage and on-demand release of microwaves using superconducting resonators with tunable coupling. Appl. Phys. Lett. 104, 232604 (2014).

    Article  ADS  Google Scholar 

  25. Flurin, E., Roch, N., Pillet, J. D., Mallet, F. & Huard, B. Superconducting quantum node for entanglement and storage of microwave radiation. Phys. Rev. Lett. 114, 090503 (2015).

    Article  ADS  Google Scholar 

  26. Schuster, D. I. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007).

    Article  ADS  Google Scholar 

  27. Heeres, R. W. et al. Implementing a universal gate set on a logical qubit encoded in an oscillator. Preprint at http://arXiv.org/abs/1608.02430 (2016).

  28. Nigg, S. E. et al. Black-box superconducting circuit quantization. Phys. Rev. Lett. 108, 240502 (2012).

    Article  ADS  Google Scholar 

  29. Wang, C. et al. A Schrodinger cat living in two boxes. Science 352, 1087–1091 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  30. Bergeal, N. et al. Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature 465, 64–68 (2010).

    Article  ADS  Google Scholar 

  31. Leonhardt, U. Measuring the Quantum State of Light (Cambridge Univ. Press, 1997).

    MATH  Google Scholar 

  32. Bertet, P. et al. Direct measurement of the Wigner function of a one-photon Fock state in a cavity. Phys. Rev. Lett. 89, 200402 (2002).

    Article  ADS  Google Scholar 

  33. Michael, M. H. et al. New class of quantum error-correcting codes for a bosonic mode. Phys. Rev. X 6, 031006 (2016).

    Google Scholar 

  34. Ourjoumtsev, A., Ferreyrol, F., Tualle-Brouri, R. & Grangier, P. Preparation of non-local superpositions of quasi-classical light states. Nat. Phys. 5, 189–192 (2009).

    Article  Google Scholar 

  35. Roy, A., Stone, A. D. & Jiang, L. Concurrent remote entanglement with quantum error correction against photon losses. Phys. Rev. A 94, 032333 (2016).

    Article  ADS  Google Scholar 

  36. Andrews, R. W., Reed, A. P., Cicak, K., Teufel, J. D. & Lehnert, K. W. Quantum-enabled temporal and spectral mode conversion of microwave signals. Nat. Commun. 6, 10021 (2015).

    Article  ADS  Google Scholar 

  37. Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

    Article  Google Scholar 

  38. Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Blumoff, K. Chou, M. Constantin and M. Reagor for experimental assistance, and K. Sliwa and A. Narla for help setting up the parametric amplifier. We gratefully acknowledge valuable discussions with S. M. Girvin, R. Hanson, Z. Leghtas, K. W. Lehnert, A. Narla, A. Reed, S. Shankar and S. Touzard. This research was supported by the US Army Research Office (W911NF-14-1-0011). W.P. was supported by NSF grant PHY1309996 and by a fellowship instituted with a Max Planck Research Award from the Alexander von Humboldt Foundation; W.P. and P.R. by the US Air Force Office of Scientific Research (FA9550-15-1-0015); C.J.A. by an NSF Graduate Research Fellowship (DGE-1122492); L.D.B. by the ARO QuaCGR Fellowship; L.J. by the Alfred P. Sloan Foundation and the Packard Foundation. Facilities use was supported by the Yale Institute for Nanoscience and Quantum Engineering (YINQE), the Yale SEAS cleanroom, and the National Science Foundation (MRSECDMR-1119826).

Author information

Authors and Affiliations

Authors

Contributions

W.P., C.J.A. and L.D.B. took and analysed the data, and performed theoretical modelling with input from U.V.; C.J.A. fabricated the device; P.R. contributed to the measurement software; W.P., C.J.A., L.D.B. and R.J.S. wrote the manuscript with input from all authors. R.J.S. supervised the project.

Corresponding author

Correspondence to Wolfgang Pfaff.

Ethics declarations

Competing interests

R.J.S., M.H.D. and L.F. are founders and equity shareholders of Quantum Circuits, Inc.

Supplementary information

Supplementary information

Supplementary information (PDF 1032 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfaff, W., Axline, C., Burkhart, L. et al. Controlled release of multiphoton quantum states from a microwave cavity memory. Nature Phys 13, 882–887 (2017). https://doi.org/10.1038/nphys4143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing