Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes

Abstract

Two-dimensional materials offer new opportunities for both fundamental science and technological applications, by exploiting the electron’s spin. Although graphene is very promising for spin communication due to its extraordinary electron mobility, the lack of a bandgap restricts its prospects for semiconducting spin devices such as spin diodes and bipolar spin transistors. The recent emergence of two-dimensional semiconductors could help overcome this basic challenge. In this letter we report an important step towards making two-dimensional semiconductor spin devices. We have fabricated a spin valve based on ultrathin (5 nm) semiconducting black phosphorus (bP), and established fundamental spin properties of this spin channel material, which supports all electrical spin injection, transport, precession and detection up to room temperature. In the non-local spin valve geometry we measure Hanle spin precession and observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 μm. Our experimental results are in a very good agreement with first-principles calculations and demonstrate that the Elliott–Yafet spin relaxation mechanism is dominant. We also show that spin transport in ultrathin bP depends strongly on the charge carrier concentration, and can be manipulated by the electric field effect.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device fabrication and charge transport characterization.
Figure 3: VBG-dependent spin transport.
Figure 2: Electronic spin transport and Hanle spin precession measurements.
Figure 4: Temperature dependent spin transport.

Similar content being viewed by others

References

  1. Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotech. 9, 794–807 (2014).

    ADS  Google Scholar 

  2. Zutic, I., Fabian, J. & Erwin, S. C. Bipolar spintronics: fundamentals and applications. IBM J. Res. Dev. 50, 121–139 (2006).

    Google Scholar 

  3. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    ADS  Google Scholar 

  4. Jansen, R. Silicon spintronics. Nat. Mater. 11, 400–408 (2012).

    ADS  Google Scholar 

  5. Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).

    ADS  Google Scholar 

  6. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    ADS  Google Scholar 

  7. Appelbaum, I., Huang, B. & Monsma, D. J. Electronic measurement and control of spin transport in silicon. Nature 447, 295–298 (2007).

    ADS  Google Scholar 

  8. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    ADS  Google Scholar 

  9. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

    Article  ADS  Google Scholar 

  10. Drögeler, M. et al. Spin lifetimes exceeding 12 ns in graphene nonlocal spin valve devices. Nano Lett. 16, 3533–3539 (2016).

    ADS  Google Scholar 

  11. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotech. 6, 147–150 (2011).

    ADS  Google Scholar 

  12. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotech. 9, 372–377 (2014).

    ADS  Google Scholar 

  13. Yang, L. et al. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2 . Nat. Phys. 11, 830–834 (2015).

    Google Scholar 

  14. Katmis, F. et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature 533, 513–516 (2016).

    ADS  Google Scholar 

  15. Hsu, W.-T. et al. Optically initialized robust valley-polarized holes in monolayer WSe2 . Nat. Commun. 6, 8963 (2015).

    ADS  Google Scholar 

  16. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Google Scholar 

  17. Long, G. et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett. 16, 7768–7773 (2016).

    ADS  Google Scholar 

  18. Popović, Z. S., Kurdestany, J. M. & Satpathy, S. Electronic structure and anisotropic Rashba spin–orbit coupling in monolayer black phosphorus. Phys. Rev. B 92, 35135 (2015).

    ADS  Google Scholar 

  19. Li, P. & Appelbaum, I. Electrons and holes in phosphorene. Phys. Rev. B 90, 115439 (2014).

    ADS  Google Scholar 

  20. Kurpas, M., Gmitra, M. & Fabian, J. Spin–orbit coupling and spin relaxation in phosphorene: intrinsic versus extrinsic effects. Phys. Rev. B 94, 155423 (2016).

    ADS  Google Scholar 

  21. Avsar, A. et al. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 9, 4138–4145 (2015).

    Google Scholar 

  22. Avsar, A. et al. Electronic spin transport in dual-gated bilayer graphene. NPG Asia Mater. 8, e274 (2016).

    Google Scholar 

  23. Kochan, D., Gmitra, M. & Fabian, J. Spin relaxation mechanism in graphene: resonant scattering by magnetic impurities. Phys. Rev. Lett. 112, 116602 (2014).

    ADS  Google Scholar 

  24. Yamaguchi, T. et al. Electrical spin injection into graphene through monolayer hexagonal boron nitride. Appl. Phys. Express 6, 73001 (2013).

    Google Scholar 

  25. Ribeiro, H. B. et al. Unusual angular dependence of the Raman response in black phosphorus. ACS Nano 9, 4270–4276 (2015).

    Google Scholar 

  26. Jönsson-Åkerman, B. J. et al. Reliability of normal-state current–voltage characteristics as an indicator of tunnel-junction barrier quality. Appl. Phys. Lett. 77, 1870 (2000).

    ADS  Google Scholar 

  27. Farmanbar, M. & Brocks, G. Controlling the Schottky barrier at MoS2/metal contacts by inserting a BN monolayer. Phys. Rev. B 91, 161304 (2015).

    ADS  Google Scholar 

  28. Cai, Y., Zhang, G. & Zhang, Y.-W. Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. J. Phys. Chem. C 119, 13929–13936 (2015).

    Google Scholar 

  29. Jedema, F. J., Filip, A. T. & van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345–348 (2001).

    ADS  Google Scholar 

  30. Fukuma, Y. et al. Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves. Nat. Mater. 10, 527–531 (2011).

    ADS  Google Scholar 

  31. Sasaki, T. et al. Evidence of electrical spin injection into silicon using MgO tunnel barrier. IEEE Trans. Magn. 46, 1436–1439 (2010).

    ADS  Google Scholar 

  32. Han, W. et al. Tunneling spin injection into single layer graphene. Phys. Rev. Lett. 105, 167202 (2010).

    ADS  Google Scholar 

  33. Takahashi, S. & Maekawa, S. Spin injection and detection in magnetic nanostructures. Phys. Rev. B 67, 52409 (2003).

    ADS  Google Scholar 

  34. Johnson, M. & Silsbee, R. H. Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985).

    ADS  Google Scholar 

  35. Elliott, R. J. Theory of the effect of spin–orbit coupling on magnetic resonance in some semiconductors. Phys. Rev. 96, 266–279 (1954).

    ADS  MATH  Google Scholar 

  36. Yafet, Y. Solid State Phys. Ed. by F. Seitz D. Turnbull Vol. 14 (Academic, 1963).

    Google Scholar 

  37. Fabian, J. & Das Sarma, S. Spin relaxation of conduction electrons in polyvalent metals: theory and a realistic calculation. Phys. Rev. Lett. 81, 5624–5627 (1998).

    ADS  Google Scholar 

  38. Zimmermann, B. et al. Anisotropy of spin relaxation in metals. Phys. Rev. Lett. 109, 236603 (2012).

    ADS  Google Scholar 

  39. Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nat. Phys. 3, 197–202 (2007).

    Google Scholar 

  40. Suzuki, T. et al. Room-temperature electron spin transport in a highly doped Si channel. Appl. Phys. Express 4, 23003 (2011).

    Google Scholar 

  41. Peterson, T. A. et al. Spin injection and detection up to room temperature in Heusler alloy/n-GaAs spin valves. Phys. Rev. B 94, 235309 (2016).

    ADS  Google Scholar 

  42. Miyakawa, T. et al. Efficient gate control of spin-valve signals and Hanle signals in GaAs channel with p–i–n junction-type back-gate structure. Appl. Phys. Express 9, 23103 (2016).

    Google Scholar 

  43. Tahara, T. et al. Observation of large spin accumulation voltages in nondegenerate Si spin devices due to spin drift effect: experiments and theory. Phys. Rev. B 93, 214406 (2016).

    ADS  Google Scholar 

  44. Tahara, T. et al. Room-temperature operation of Si spin MOSFET with high on/off spin signal ratio. Appl. Phys. Express 8, 113004 (2015).

    ADS  Google Scholar 

  45. Weeks, C., Hu, J., Alicea, J., Franz, M. & Wu, R. Engineering a robust quantum spin Hall state in graphene via adatom deposition. Phys. Rev. X 1, 21001 (2011).

    Google Scholar 

  46. Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotech. 10, 534–540 (2015).

    ADS  Google Scholar 

  47. Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent. J. Cryst. Growth 303, 525–529 (2007).

    ADS  Google Scholar 

  48. Brown, A. & Rundqvist, S. Refinement of the crystal structure of black phosphorus. Acta Crystallogr. 19, 684–685 (1965).

    Google Scholar 

  49. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Google Scholar 

  50. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    ADS  Google Scholar 

  51. Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz. Techn. Univ. Wien, Aust., 2016).

    Google Scholar 

  52. Tran, F. & Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009).

    ADS  Google Scholar 

  53. Li, L. et al. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotech. 10, 608–613 (2015).

    ADS  Google Scholar 

  54. Chen, X. High-quality sandwiched black phosphorus heterostructures and its quantum oscillations. Nat. Commun. 6, 7315 (2015).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Natarajan and Y. Yeo for their help. B.Ö. would like to acknowledge support by the National Research Foundation, Prime Minister’s Office, Singapore, under its Medium Sized Centre Programme and CRP award ‘Novel 2D materials with tailored properties: beyond graphene’ (Grant number R-144-000-295-281) and Competitive Research Programme (CRP Award No. NRF-CRP9-2011-3). M.K. acknowledges support from the DFG SPP 1538 and National Science Centre (NCN) grant DEC-2013/11/B/ST3/00824. M.G. and J.F. acknowledge support from DFG SFB 689 and GRK 1570. J.F. acknowledges support by the European Union’s Horizon 2020 research and innovation programme under Grant agreement No. 696656. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan and JSPS KAKENHI Grant Numbers JP26248061, JP15K21722 and JP25106006.

Author information

Authors and Affiliations

Authors

Contributions

B.Ö. initiated and coordinated the work. A.A. and B.Ö. designed the experiments. A.A. and J.Y.T. fabricated the samples. A.A. performed transport measurements. K.W. and T.T. grew the hBN and bP crystals. M.K., M.G. and J.F. provided the theoretical work. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Barbaros Özyilmaz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 601 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avsar, A., Tan, J., Kurpas, M. et al. Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes. Nature Phys 13, 888–893 (2017). https://doi.org/10.1038/nphys4141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing