Hotspot-mediated non-dissipative and ultrafast plasmon passage

Article metrics


Plasmonic nanoparticles hold great promise as photon handling elements and as channels for coherent transfer of energy and information in future all-optical computing devices1,2,3,4,5. Coherent energy oscillations between two spatially separated plasmonic entities via a virtual middle state exemplify electron-based population transfer, but their realization requires precise nanoscale positioning of heterogeneous particles6,7,8,9,10. Here, we show the assembly and optical analysis of a triple-particle system consisting of two gold nanoparticles with an inter-spaced silver island. We observe strong plasmonic coupling between the spatially separated gold particles, mediated by the connecting silver particle, with almost no dissipation of energy. As the excitation energy of the silver island exceeds that of the gold particles, only quasi-occupation of the silver transfer channel is possible. We describe this effect both with exact classical electrodynamic modelling and qualitative quantum-mechanical calculations. We identify the formation of strong hotspots between all particles as the main mechanism for the lossless coupling and thus coherent ultrafast energy transfer between the remote partners. Our findings could prove useful for quantum gate operations, as well as for classical charge and information transfer processes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Plasmonic transfer system.
Figure 2: Dark-field scattering spectra and simulations of the plasmonic transfer system.
Figure 3: Polarization-resolved measurements and calculations.
Figure 4: Full electromagnetic simulations of the plasmon transfer dynamics.
Figure 5: Quantum model.


  1. 1

    Greentree, A. D., Cole, J. H., Hamilton, A. R. & Hollenberg, L. C. L. Coherent electronic transfer in quantum dot systems using adiabatic passage. Phys. Rev. B 70, 235317 (2004).

  2. 2

    Rech, J. & Kehrein, S. Effect of measurement backaction on adiabatic coherent electron transport. Phys. Rev. Lett. 106, 136808 (2011).

  3. 3

    Aharonovich, I., Greentree, A. D. & Prawer, S. Diamond photonics. Nat. Photon. 5, 397–405 (2011).

  4. 4

    Ozbay, E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

  5. 5

    Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

  6. 6

    Pal, S., Deng, Z., Ding, B., Yan, H. & Liu, Y. DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. Angew. Chem. 122, 2760–2764 (2010).

  7. 7

    Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

  8. 8

    Zheng, J. et al. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6, 1502–1504 (2006).

  9. 9

    Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

  10. 10

    Gopinath, A., Miyazono, E., Faraon, A. & Rothemund, P. W. K. Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature 535, 401–405 (2016).

  11. 11

    Bergmann, K., Theuer, H. & Shore, B. W. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998).

  12. 12

    Vitanov, N. V., Halfmann, T., Shore, B. W. & Bergmann, K. Laser-induced population transfer by adiabatic passage techniques. Annu. Rev. Phys. Chem. 52, 763–809 (2001).

  13. 13

    Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229–232 (2003).

  14. 14

    Seeman, N. C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).

  15. 15

    Schreiber, R. et al. Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nat. Nanotech. 9, 74–78 (2014).

  16. 16

    Mastroianni, A. J., Claridge, S. A. & Alivisatos, A. P. Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J. Am. Chem. Soc. 131, 8455–8459 (2009).

  17. 17

    Roller, E.-M., Argyropoulos, C., Högele, A., Liedl, T. & Pilo-Pais, M. Plasmon–exciton coupling using DNA templates. Nano Lett. 16, 5962–5966 (2016).

  18. 18

    Klein, W. P. et al. Multiscaffold DNA origami nanoparticle waveguides. Nano Lett. 13, 3850–3856 (2013).

  19. 19

    Ding, B. et al. Gold nanoparticle self-similar chain structure organized by DNA origami. J. Am. Chem. Soc. 132, 3248–3249 (2010).

  20. 20

    Roller, E.-M. et al. DNA-assembled nanoparticle rings exhibit electric and magnetic resonances at visible frequencies. Nano Lett. 15, 1368–1373 (2015).

  21. 21

    Stein, I. H., Schüller, V., Böhm, P., Tinnefeld, P. & Liedl, T. Single-molecule FRET ruler based on rigid DNA origami blocks. ChemPhysChem 12, 689–695 (2011).

  22. 22

    Sharma, J. et al. DNA-tile-directed self-assembly of quantum dots into two-dimensional nanopatterns. Angew. Chem. Int. Ed. 47, 5157–5159 (2008).

  23. 23

    Fu, A. et al. Discrete nanostructures of quantum dots/Au with DNA. J. Am. Chem. Soc. 126, 10832–10833 (2004).

  24. 24

    Lee, J.-H., Kim, G.-H. & Nam, J.-M. Directional synthesis and assembly of bimetallic nanosnowmen with DNA. J. Am. Chem. Soc. 134, 5456–5459 (2012).

  25. 25

    Pal, S., Sharma, J., Yan, H. & Liu, Y. Stable silver nanoparticle-DNA conjugates for directed self-assembly of core-satellite silver-gold nanoclusters. Chem. Commun. 6059–6061 (2009).

  26. 26

    Xu, L., Tan, L. S. & Hong, M. H. Tuning of localized surface plasmon resonance of well-ordered Ag/Au bimetallic nanodot arrays by laser interference lithography and thermal annealing. Appl. Opt. 50, G74–G79 (2011).

  27. 27

    Shegai, T. et al. A bimetallic nanoantenna for directional colour routing. Nat. Commun. 2, 481 (2011).

  28. 28

    Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

  29. 29

    Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

  30. 30

    Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

  31. 31

    May, V. & Kühn, O. Charge and Energy Transfer Dynamics in Molecular Systems Vol. 3 (John Wiley, 2011).

  32. 32

    Govorov, A. O., Lee, J. & Kotov, N. A. Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles. Phys. Rev. B 76, 125308 (2007).

  33. 33

    Otten, M. et al. Entanglement of two, three, or four plasmonically coupled quantum dots. Phys. Rev. B 92, 125432 (2015).

  34. 34

    Weller, L. et al. Gap-dependent coupling of Ag–Au nanoparticle heterodimers using DNA origami-based self-assembly. ACS Photon. 3, 1589–1595 (2016).

Download references


This work was funded by the Volkswagen Foundation, the DFG through the Nanosystems Initiative Munich (NIM), through the ERC Starting Grant ORCA (GA No: 336440). A.O.G. and L.V.B. acknowledge additional support from the US Army Research Office (W911NF-12-1-0407).

Author information

E.-M.R., A.O.G. and T.L. conceived the experiments and co-wrote the manuscript. E.-M.R. designed the structure and analysed the data. E.-M.R. and C.P. performed the experiments. L.V.B. and L.K.K. performed the simulations, A.O.G. developed the quantum model. All authors contributed to the interpretation and general discussion and reviewed the manuscript.

Correspondence to Alexander O. Govorov or Tim Liedl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2063 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roller, E., Besteiro, L., Pupp, C. et al. Hotspot-mediated non-dissipative and ultrafast plasmon passage. Nature Phys 13, 761–765 (2017) doi:10.1038/nphys4120

Download citation

Further reading