Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet


Controllable arrays of ions and ultracold atoms can simulate complex many-body phenomena and may provide insights into unsolved problems in modern science. To this end, experimentally feasible protocols for quantifying the buildup of quantum correlations and coherence are needed, as performing full state tomography does not scale favourably with the number of particles. Here we develop and experimentally demonstrate such a protocol, which uses time reversal of the many-body dynamics to measure out-of-time-order correlation functions (OTOCs) in a long-range Ising spin quantum simulator with more than 100 ions in a Penning trap. By measuring a family of OTOCs as a function of a tunable parameter we obtain fine-grained information about the state of the system encoded in the multiple quantum coherence spectrum, extract the quantum state purity, and demonstrate the buildup of up to 8-body correlations. Future applications of this protocol could enable studies of many-body localization, quantum phase transitions, and tests of the holographic duality between quantum and gravitational systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the many-body echo scheme.
Figure 2: Phonon-mediated, reversible spin–spin coupling in a Penning trap.
Figure 3: Measured fidelity and coherence spectrum of N = 48 ions.
Figure 4: Probing scrambling through magnetization dynamics.


  1. Loschmidt, J. Über den Zustand des Wärmegleichgewichtes eines Systems von Körpern mit Rücksicht auf die Schwerkraft. 1. Teil. Sitzungsber. Kais. Akad. Wiss. Wien, Math. Naturwiss. Classe 73, 128–142 (1876).

    Google Scholar 

  2. Hahn, E. L. Spin echoes. Phys. Rev. 80, 580–594 (1950).

    Article  ADS  MATH  Google Scholar 

  3. Baum, J., Munowitz, M., Garroway, A. N. & Pines, A. Multiple-quantum dynamics in solid-state NMR. J. Chem. Phys. 83, 2015–2025 (1985).

    Article  ADS  Google Scholar 

  4. Widera, A. et al. Quantum spin dynamics of mode-squeezed Luttinger liquids in two-component atomic gases. Phys. Rev. Lett. 100, 140401 (2008).

    Article  ADS  Google Scholar 

  5. Linnemann, D. et al. Quantum-enhanced sensing based on time reversal of non-linear dynamics. Phys. Rev. Lett. 117, 013001 (2016).

    Article  ADS  Google Scholar 

  6. Swingle, B., Bentsen, G., Schleier-Smith, M. & Hayden, P. Measuring the scrambling of quantum information. Phys. Rev. A 94, 040302 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  7. Yao, N. Y. et al. Interferometric approach to probing fast scrambling. Preprint at (2016).

  8. Shen, H., Zhang, P., Fan, R. & Zhai, H. Out-of-time-order correlation at a quantum phase transition. Preprint at (2016).

  9. Zhu, G., Hafezi, M. & Grover, T. Measurement of many-body chaos using a quantum clock. Phys. Rev. A 94, 062329 (2016).

    Article  ADS  Google Scholar 

  10. Sekino, Y. & Susskind, L. Fast scramblers. J. High Energy Phys. 2008, 065 (2008).

    Article  Google Scholar 

  11. Shenker, S. H. & Stanford, D. Black holes and the butterfly effect. J. High Energy Phys. 2014, 067 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  12. Shenker, S. H. & Stanford, D. Stringy effects in scrambling. J. High Energy Phys. 2015, 132 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  13. Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nat. Phys. 11, 124–130 (2015).

    Article  Google Scholar 

  14. Fu, W. & Sachdev, S. Numerical study of fermion and boson models with infinite-range random interactions. Phys. Rev. B 94, 035135 (2016).

    Article  ADS  Google Scholar 

  15. Danshita, I., Hanada, M. & Tezuka, M. Creating and probing the Sachdev-Ye-Kitaev model with ultracold gases: towards experimental studies of quantum gravity. Preprint at (2016).

  16. Hosur, P., Qi, X.-L., Roberts, D. A. & Yoshida, B. Chaos in quantum channels. J. High Energy Phys. 2016, 004 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  17. Kitaev, A. A simple model of quantum holography (7 April 2015 and 27 May 2015). Talks given at The Kavli Institute for Theoretical Physics (KITP) (University of California).

  18. Bohnet, J. G. et al. Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science 352, 1297–1301 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Leibfried, D. et al. Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639–642 (2005).

    Article  ADS  Google Scholar 

  20. Monz, T. et al. 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011).

    Article  ADS  Google Scholar 

  21. Strobel, H. et al. Fisher information and entanglement of non-gaussian spin states. Science 345, 424–427 (2014).

    Article  ADS  Google Scholar 

  22. Álvarez, G. A., Suter, D. & Kaiser, R. Localization-delocalization transition in the dynamics of dipolar-coupled nuclear spins. Science 349, 846–848 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Sánchez, C. M., Levstein, P. R., Acosta, R. H. & Chattah, A. K. NMR Loschmidt echoes as quantifiers of decoherence in interacting spin systems. Phys. Rev. A 80, 012328 (2009).

    Article  ADS  Google Scholar 

  24. Debnath, S. et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63–66 (2016).

    Article  ADS  Google Scholar 

  25. Cucchietti, F. M. Time reversal in an optical lattice. J. Opt. Soc. Am. B 27, A30–A35 (2010).

    Article  ADS  Google Scholar 

  26. Leroux, I. D., Schleier-Smith, M. H. & Vuletić, V. Implementation of cavity squeezing of a collective atomic spin. Phys. Rev. Lett. 104, 073602 (2010).

    Article  ADS  Google Scholar 

  27. Hosten, O., Krishnakumar, R., Engelsen, N. J. & Kasevich, M. A. Quantum phase magnification. Science 352, 1552–1555 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Douglas, J. S. et al. Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photon. 9, 326–331 (2015).

    Article  ADS  Google Scholar 

  29. Macrí, T., Pezzé, L. & Smerzi, A. Loschmidt echo for quantum metrology. Phys. Rev. A 94, 010102(R) (2016).

    Article  ADS  Google Scholar 

  30. Houck, A. A., Tureci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292–299 (2012).

    Article  Google Scholar 

  31. Sørensen, A. & Mølmer, K. Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971–1974 (1999).

    Article  ADS  Google Scholar 

  32. Britton, J. W. et al. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012).

    Article  ADS  Google Scholar 

  33. Sawyer, B. C. et al. Spectroscopy and thermometry of drumhead modes in a mesoscopic trapped-ion crystal using entanglement. Phys. Rev. Lett. 108, 213003 (2012).

    Article  ADS  Google Scholar 

  34. Biercuk, M. J. et al. High-fidelity quantum control using ion crystals in a Penning trap. Quant. Info. Comput. 9, 920–949 (2009).

    MathSciNet  MATH  Google Scholar 

  35. Leibfried, D. et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003).

    Article  ADS  Google Scholar 

  36. Britton, J. W. et al. Vibration-induced field fluctuations in a superconducting magnet. Phys. Rev. A 93, 062511 (2016).

    Article  ADS  Google Scholar 

  37. Davis, E., Bentsen, G. & Schleier-Smith, M. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett. 116, 053601 (2016).

    Article  ADS  Google Scholar 

  38. Cucchietti, F. M., Fernandez-Vidal, S. & Paz, J. P. Universal decoherence induced by an environmental quantum phase transition. Phys. Rev. A 75, 032337 (2007).

    Article  ADS  Google Scholar 

  39. Quan, H. T., Song, Z., Liu, X. F., Zanardi, P. & Sun, C. P. Decay of Loschmidt echo enhanced by quantum criticality. Phys. Rev. Lett. 96, 140604 (2006).

    Article  ADS  Google Scholar 

  40. Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).

    Article  ADS  Google Scholar 

  41. Jacquod, P. & Petitjean, C. Decoherence, entanglement and irreversibility in quantum dynamical systems with few degrees of freedom. Adv. Phys. 58, 67–196 (2009).

    Article  ADS  Google Scholar 

  42. Fröwis, F., Sekatski, P. & Dür, W. Detecting large quantum Fisher information with finite measurement precision. Phys. Rev. Lett. 116, 090801 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  43. Li, J. et al. Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator scrambling. Preprint at (2016).

  44. Porras, D. & Cirac, J. I. Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004).

    Article  ADS  Google Scholar 

  45. Richerme, P. et al. Non-local propagation of correlations in quantum systems with long-range interactions. Nature 511, 198–201 (2014).

    Article  ADS  Google Scholar 

  46. Jurcevic, P. et al. Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature 511, 202–205 (2014).

    Article  ADS  Google Scholar 

  47. Uys, H. et al. Decoherence due to elastic Rayleigh scattering. Phys. Rev. Lett. 105, 200401 (2010).

    Article  ADS  Google Scholar 

Download references


We thank P. Hauke, J. Price and S. Kolkowitz for discussions and careful reading of our manuscript, and gratefully acknowledge J. Britton and B. Sawyer for preceding experimental contributions to this work. Supported by Defense Advanced Research Projects Agency (DARPA) ATN program through grant number W911NF-16-1-0576 through the Army Research Office (ARO), NSF grant PHY 1521080, JILA-NSF grant PFC-1125844, the ARO, and the Air Force Office of Scientific Research and its Multidisciplinary University Research Initiative (AFOSR-MURI) (A.M.R.) and by a National Research Council Research Associateship Award at NIST (J.G.B. and M.L.W.). All authors acknowledge financial support from NIST.

Author information

Authors and Affiliations



J.G.B. and J.J.B. conducted the experiment. The theoretical modelling was done by M.G., A.S.-N., M.L.W. and A.M.R. All authors jointly interpreted and discussed the experimental data.

Corresponding author

Correspondence to Ana Maria Rey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 628 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gärttner, M., Bohnet, J., Safavi-Naini, A. et al. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet. Nature Phys 13, 781–786 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing