Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mottness at finite doping and charge instabilities in cuprates


The influence of Mott physics on the doping–temperature phase diagram of copper oxides represents a major issue that is the subject of intense theoretical and experimental efforts. Here, we investigate the ultrafast electron dynamics in prototypical single-layer Bi-based cuprates at the energy scale of the O-2p → Cu-3d charge-transfer (CT) process. We demonstrate a clear evolution of the CT excitations from incoherent and localized, as in a Mott insulator, to coherent and delocalized, as in a conventional metal. This reorganization of the high-energy degrees of freedom occurs at the critical doping pcr ≈ 0.16 irrespective of the temperature, and it can be well described by dynamical mean-field theory calculations. We argue that the onset of low-temperature charge instabilities is the low-energy manifestation of the underlying Mottness that characterizes the p < pcr region of the phase diagram. This discovery sets a new framework for theories of charge order and low-temperature phases in underdoped copper oxides.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Charge-transfer excitation and optical properties of cuprates.
Figure 2: Ultrafast optical spectroscopy on La-Bi2201.
Figure 3: The high-energy phase diagram of cuprates.


  1. 1

    Lee, P. A. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    ADS  Article  Google Scholar 

  2. 2

    Phillips, P. Mottness. Ann. Phys. 321, 1634–1650 (2006); July 2006 Special Issue.

    ADS  Article  Google Scholar 

  3. 3

    Abbamonte, P. et al. Spatially modulated “Mottness” in La2−xBaxCuO4 . Nat. Phys. 1, 155–158 (2005).

    Article  Google Scholar 

  4. 4

    Fradkin, E. & Kivelson, S. High-temperature superconductivity: ineluctable complexity. Nat. Phys. 8, 864–866 (2012).

    Article  Google Scholar 

  5. 5

    Alloul, H. What is the simplest model that captures the basic experimental facts of the physics of underdoped cuprates? C. R. Phys. 15, 519–524 (2014).

    Article  Google Scholar 

  6. 6

    Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    ADS  Article  Google Scholar 

  7. 7

    Emery, V. & Kivelson, S. Frustrated electronic phase separation and high-temperature superconductors. Physica C 209, 597–621 (1993).

    ADS  Article  Google Scholar 

  8. 8

    Castellani, C., Di Castro, C. & Grilli, M. Singular quasiparticle scattering in the proximity of charge instabilities. Phys. Rev. Lett. 75, 4650–4653 (1995).

    ADS  Article  Google Scholar 

  9. 9

    Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998).

    ADS  Article  Google Scholar 

  10. 10

    Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y, Nd)Ba2Cu3O6+x . Science 337, 821–825 (2012).

    ADS  Article  Google Scholar 

  11. 11

    Achkar, A. J. et al. Distinct charge orders in the planes and chains of ortho-iii-ordered YBa2Cu3O6+δ superconductors identified by resonant elastic X-ray scattering. Phys. Rev. Lett. 109, 167001 (2012).

    ADS  Article  Google Scholar 

  12. 12

    Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67 . Nat. Phys. 8, 871–876 (2012).

    Article  Google Scholar 

  13. 13

    Blanco-Canosa, S. et al. Resonant X-ray scattering study of charge-density wave correlations in YBa2Cu3O6+x . Phys. Rev. B 90, 054513 (2014).

    ADS  Article  Google Scholar 

  14. 14

    Tabis, W. et al. Charge order and its connection with Fermi-liquid charge transport in a pristine high-Tc cuprate. Nat. Commun. 5, 5875 (2014).

    ADS  Article  Google Scholar 

  15. 15

    da Silva Neto, E. H. et al. Charge ordering in the electron-doped superconductor Nd2xCexCuO4 . Science 347, 282–285 (2015).

    ADS  Article  Google Scholar 

  16. 16

    Comin, R. et al. Broken translational and rotational symmetry via charge stripe order in underdoped YBa2Cu3O6+y . Science 347, 1335–1339 (2015).

    ADS  Article  Google Scholar 

  17. 17

    Comin, R. et al. Charge order driven by Fermi-arc instability in Bi2Sr2−xLaxCuO6+δ . Science 343, 390–392 (2014).

    ADS  Article  Google Scholar 

  18. 18

    da Silva Neto, E. H. et al. Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates. Science 343, 393–396 (2014).

    ADS  Article  Google Scholar 

  19. 19

    Wu, T. et al. Incipient charge order observed by NMR in the normal state of YBa2Cu3Oy . Nat. Commun. 6, 6438 (2015).

    ADS  Article  Google Scholar 

  20. 20

    v. Zimmermann, M. et al. Hard X-ray diffraction study of charge stripe order in La1.48Nd0.4Sr0.12CuO4 . Europhys. Lett. 41, 629–634 (1998).

    ADS  Article  Google Scholar 

  21. 21

    Hinkov, V. et al. Spin dynamics in the pseudogap state of a high-temperature superconductor. Nat. Phys. 3, 780–785 (2007).

    Article  Google Scholar 

  22. 22

    Tranquada, J. M. et al. Evidence for unusual superconducting correlations coexisting with stripe order in La1.875Ba0.125CuO4 . Phys. Rev. B 78, 174529 (2008).

    ADS  Article  Google Scholar 

  23. 23

    Lawler, M. J. et al. Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature 466, 347–351 (2010).

    ADS  Article  Google Scholar 

  24. 24

    Li, Y. et al. Hidden magnetic excitation in the pseudogap phase of a high-Tc superconductor. Nature 468, 283–285 (2010).

    ADS  Article  Google Scholar 

  25. 25

    Karapetyan, H. et al. Magneto-optical measurements of a cascade of transitions in superconducting La1.875Ba0.125CuO4 single crystals. Phys. Rev. Lett. 109, 147001 (2012).

    ADS  Article  Google Scholar 

  26. 26

    Sordi, G., Haule, K. & Tremblay, A.-M. S. Mott physics and first-order transition between two metals in the normal-state phase diagram of the two-dimensional Hubbard model. Phys. Rev. B 84, 075161 (2011).

    ADS  Article  Google Scholar 

  27. 27

    Phillips, P. Normal state of the copper oxide high-temperature superconductors. Phil. Trans. R. Soc. A 369, 1572–1573 (2011).

    ADS  Article  Google Scholar 

  28. 28

    Uchida, S. et al. Optical spectra of La2−xSrxCuO4: effect of carrier doping on the electronic structure of the CuO2 plane. Phys. Rev. B 43, 7942–7954 (1991).

    ADS  Article  Google Scholar 

  29. 29

    Lupi, S. et al. Far-infrared absorption and the metal-to-insulator transition in hole-doped cuprates. Phys. Rev. Lett. 102, 206409 (2009).

    ADS  Article  Google Scholar 

  30. 30

    Nicoletti, D. et al. High-temperature optical spectral weight and Fermi-liquid renormalization in bi-based cuprate superconductors. Phys. Rev. Lett. 105, 077002 (2010).

    ADS  Article  Google Scholar 

  31. 31

    Dal Conte, S. et al. Disentangling the electronic and phononic glue in a high-Tc superconductor. Science 335, 1600–1603 (2012).

    ADS  Article  Google Scholar 

  32. 32

    Dal Conte, S. et al. Snapshots of the retarded interaction of charge carriers with ultrafast fluctuations in cuprates. Nat. Phys. 11, 421–426 (2015).

    Article  Google Scholar 

  33. 33

    Hansmann, P., Parragh, N., Toschi, A., Sangiovanni, G. & Held, K. Importance of dp Coulomb interaction for high Tc cuprates and other oxides. New J. Phys. 16, 033009 (2014).

    ADS  Article  Google Scholar 

  34. 34

    Falck, J. P., Levy, A., Kastner, M. A. & Birgeneau, R. J. Charge-transfer spectrum and its temperature dependence in La2CuO4 . Phys. Rev. Lett. 69, 1109–1112 (1992).

    ADS  Article  Google Scholar 

  35. 35

    Novelli, F. et al. Witnessing the formation and relaxation of dressed quasi-particles in a strongly correlated electron system. Nat. Commun. 5, 5112 (2014).

    ADS  Article  Google Scholar 

  36. 36

    Kawasaki, S., Lin, C., Kuhns, P. L., Reyes, A. P. & Zheng, G.-q. Carrier-concentration dependence of the pseudogap ground state of superconducting Bi2Sr2−xLaxCuO6+δ revealed by 63,65Cu-nuclear magnetic resonance in very high magnetic fields. Phys. Rev. Lett. 105, 137002 (2010).

    ADS  Article  Google Scholar 

  37. 37

    Cilento, F. et al. Photo-enhanced antinodal conductivity in the pseudogap state of high-Tc cuprates. Nat. Commun. 5, 4353 (2014).

    ADS  Article  Google Scholar 

  38. 38

    Grilli, M., Raimondi, R., Castellani, C., Di Castro, C. & Kotliar, G. Superconductivity, phase separation, and charge-transfer instability in the U = limit of the three-band model of the CuO2 planes. Phys. Rev. Lett. 67, 259–262 (1991).

    ADS  Article  Google Scholar 

  39. 39

    Sordi, G., Sémon, P., Haule, K. & Tremblay, A.-M. S. Pseudogap temperature as a Widom line in doped Mott insulators. Sci. Rep. 2, 547 (2012).

    ADS  Article  Google Scholar 

  40. 40

    Fisher, D., Kotliar, G. & Moeller, G. Midgap states in doped Mott insulators in infinite dimensions. Phys. Rev. B 52, 17112–17118 (1995).

    ADS  Article  Google Scholar 

  41. 41

    Fujita, K. et al. Simultaneous transitions in cuprate momentum-space topology and electronic symmetry breaking. Science 344, 612–616 (2014).

    ADS  Article  Google Scholar 

  42. 42

    He, Y. et al. Fermi surface and pseudogap evolution in a cuprate superconductor. Science 344, 608–611 (2014).

    ADS  Article  Google Scholar 

  43. 43

    Fournier, D. et al. Loss of nodal quasiparticle integrity in underdoped YBa2Cu3O6+x . Nat. Phys. 6, 905–911 (2010).

    Article  Google Scholar 

  44. 44

    Deutscher, G., Santander-Syro, A. F. & Bontemps, N. Kinetic energy change with doping upon superfluid condensation in high-temperature superconductors. Phys. Rev. B 72, 092504 (2005).

    ADS  Article  Google Scholar 

  45. 45

    Giannetti, C. et al. Revealing the high-energy electronic excitations underlying the onset of high-temperature superconductivity in cuprates. Nat. Commun. 2, 353 (2011).

    ADS  Article  Google Scholar 

  46. 46

    Xia, J. et al. Polar Kerr-effect measurements of the high-temperature YBa2Cu3O6+x superconductor: evidence for broken symmetry near the pseudogap temperature. Phys. Rev. Lett. 100, 127002 (2008).

    ADS  Article  Google Scholar 

  47. 47

    Ando, Y., Komiya, S., Segawa, K., Ono, S. & Kurita, Y. Electronic phase diagram of high-Tc cuprate superconductors from a mapping of the in-plane resistivity curvature. Phys. Rev. Lett. 93, 267001 (2004).

    ADS  Article  Google Scholar 

  48. 48

    Ono, S. et al. Metal-to-insulator crossover in the low-temperature normal state of Bi2Sr2−xLaxCuO6+δ . Phys. Rev. Lett. 85, 638–641 (2000).

    ADS  Article  Google Scholar 

  49. 49

    Badoux, S. et al. Change of carrier density at the pseudogap critical point of a cuprate superconductor. Nature 531, 210–214 (2016).

    ADS  Article  Google Scholar 

  50. 50

    Laliberté, F. et al. Origin of the metal-to-insulator crossover in cuprate superconductors. Preprint at (2016).

  51. 51

    Ramshaw, B. J. et al. Quasiparticle mass enhancement approaching optimal doping in a high-tc superconductor. Science 348, 317–320 (2015).

    ADS  Article  Google Scholar 

  52. 52

    Ando, Y. et al. Carrier concentrations in Bi2Sr2−zLazCu6+δ single crystals and their relation to the Hall coefficient and thermopower. Phys. Rev. B 61, R14956–R14959 (2000).

    ADS  Article  Google Scholar 

  53. 53

    Ono, S. & Ando, Y. Evolution of the resistivity anisotropy in Bi2Sr2−xLaxCuO6+δ single crystals for a wide range of hole doping. Phys. Rev. B 67, 104512 (2003).

    ADS  Article  Google Scholar 

Download references


We thank M. Grilli, A. Bianconi, L. Benfatto, F. Cilento, D. Fausti, F. Parmigiani, L. De’ Medici, M. Minola, B. Keimer and J. Bonča for useful and fruitful discussions. The research activities of M.F. have received funding from the European Union, under the project ERC-692670 (FIRSTORM). F.B. acknowledges financial support from the MIUR-Futuro in ricerca 2013 Grant in the frame of the ULTRANANO Project (project number: RBFR13NEA4). M.C. and C.G. acknowledge financial support from MIUR through the PRIN 2015 Programme (Prot. 2015C5SEJJ001). M.C. acknowledges funding by SISSA/CNR project ‘Superconductivity, Ferroelectricity and Magnetism in Bad Metals’ (Prot. 232/2015). F.B., G.F. and C.G. acknowledge support from Università Cattolica del Sacro Cuore through D.1, D.2.2 and D.3.1 grants. F.B. and G.F. acknowledge financial support from Fondazione E.U.L.O. D.B. acknowledges the Emmy Noether Programme of the Deutsche Forschung Gemeinschaft. G.C. acknowledges funding from the European Union Horizon 2020 Programme under Grant Agreement 696656 Graphene Core 1. This research was undertaken thanks in part to funding from the Max Planck-UBC Centre for Quantum Materials and the Canada First Research Excellence Fund, Quantum Materials and Future Technologies Program. The work at UBC was supported by the Killam, Alfred P. Sloan, and Natural Sciences and Engineering Research Council of Canada’s (NSERC’s) Steacie Memorial Fellowships (A.D.); the Alexander von Humboldt Fellowship (A.D.); the Canada Research Chairs Program (A.D.); and the NSERC, Canada Foundation for Innovation (CFI), and CIFAR Quantum Materials.

Author information




C.G. coordinated the research activities with input from all the coauthors, in particular S.P., S.D.C., F.B., M.F., M.C., A.D. and G.C. The NOPA-based pump–probe set-up was designed and developed by D.B. and G.C. The time-resolved optical measurements were performed by S.P., S.D.C., N.M., A.R., P.A., F.B., G.F., D.B., G.C. and C.G. The analysis of the time-resolved data was performed by S.P., S.D.C., N.M. and C.G. The mean-field estimation of the charge-transfer shift was carried out by M.F. The DMFT calculations were carried out by M.C. The La-Bi2201 crystals were characterized by S.L., R.C. and A.D. The RXS measurements were performed by R.C. and A.D. The text was written by C.G. with major input from S.P., S.D.C., F.B., G.F., D.B., S.L., M.F., M.C., A.D. and G.C. All authors extensively discussed the results and the interpretation and revised the manuscript.

Corresponding author

Correspondence to C. Giannetti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 644 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peli, S., Conte, S., Comin, R. et al. Mottness at finite doping and charge instabilities in cuprates. Nature Phys 13, 806–811 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing