Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quasiparticle interference and strong electron–mode coupling in the quasi-one-dimensional bands of Sr2RuO4

Abstract

The single-layered ruthenate Sr2RuO4 is presented as a potential spin-triplet superconductor with an order parameter that may break time-reversal invariance and host half-quantized vortices with Majorana zero modes. Although the actual nature of the superconducting state is still a matter of controversy, it is believed to condense from a metallic state that is well described by a conventional Fermi liquid. In this work we use a combination of Fourier transform scanning tunnelling spectroscopy (FT-STS) and momentum-resolved electron energy loss spectroscopy (M-EELS) to probe interaction effects in the normal state of Sr2RuO4. Our high-resolution FT-STS data show signatures of the β-band with a distinctly quasi-one-dimensional (1D) character. The band dispersion reveals surprisingly strong interaction effects that dramatically renormalize the Fermi velocity, suggesting that the normal state of Sr2RuO4 is that of a ‘correlated metal’ where correlations are strengthened by the quasi-1D nature of the bands. In addition, kinks at energies of approximately 10 meV, 38 meV and 70 meV are observed. By comparing STM and M-EELS data we show that the two higher energy features arise from coupling with collective modes. The strong correlation effects and the kinks in the quasi-1D bands could provide important information for understanding the superconducting state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fermi surfaces and crystal structure of Sr2RuO4.
Figure 2: Quasiparticle interference (QPI) of Sr2RuO4.
Figure 3: Comparison of the FT-STS images with predicted QPI patterns.
Figure 4: Visualizing the electron-collective mode coupling in the Quasi-1D bands.

Similar content being viewed by others

References

  1. Byczuk, K. et al. Kinks in the dispersion of strongly correlated electrons. Nat. Phys. 3, 168–171 (2007).

    Article  Google Scholar 

  2. Carbotte, J. P., Timusk, T. & Hwang, J. Bosons in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 74, 066501 (2011).

    Article  ADS  Google Scholar 

  3. Lanzara, A. et al. Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors. Nature 412, 510–514 (2001).

    Article  ADS  Google Scholar 

  4. Aiura, Y. et al. Kink in the dispersion of layered strontium ruthenates. Phys. Rev. Lett. 93, 117005 (2004).

    Article  ADS  Google Scholar 

  5. Mackenzie, A. P. & Maeno, Y. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003).

    ADS  Google Scholar 

  6. Kallin, C. Chiral p-wave order in Sr2RuO4 . Rep. Prog. Phys. 75, 042501 (2012).

    Article  ADS  Google Scholar 

  7. Jang, J. et al. Observation of half-height magnetization steps in Sr2RuO4 . Science 331, 186–188 (2011).

    Article  ADS  Google Scholar 

  8. Bergemann, C. Quasi-two-dimensional Fermi liquid properties of unconventional superconductor Sr2RuO4 . Adv. Phys. 52, 639–725 (2003).

    Article  ADS  Google Scholar 

  9. Liebsch, A. & Lichtenstein, A. Photoemission quasiparticles spectra of Sr2RuO4 . Phys. Rev. Lett. 84, 1591–1594 (2000).

    Article  ADS  Google Scholar 

  10. Kidd, T. E. et al. Orbital dependence of the Fermi liquid state in Sr2RuO4 . Phys. Rev. Lett. 94, 107003 (2005).

    Article  ADS  Google Scholar 

  11. Stricker, D. et al. Optical response of Sr2RuO4 reveals universal Fermi-liquid scaling and quasiparticles beyond Laudau theory. Phys. Rev. Lett. 113, 087404 (2014).

    Article  ADS  Google Scholar 

  12. Zhang, G., Gorelov, E., Sarvestani, E. & Pavarini, E. Fermi surface of Sr2RuO4: spin-orbit and anisotropic Coulomb interaction effects. Phys. Rev. Lett. 116, 106402 (2016).

    Article  ADS  Google Scholar 

  13. Iwasawa, H. et al. Interplay among Coulomb interaction, spin–orbital interaction, and multiple electron–boson interactions in Sr2RuO4 . Phys. Rev. Lett. 105, 226406 (2010).

    Article  ADS  Google Scholar 

  14. Veenstra, C. N. et al. Spin-orbital entanglement and the breakdown of singlets and triplets in Sr2RuO4 revealed by spin- and angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 112, 127002 (2014).

    Article  ADS  Google Scholar 

  15. Damascelli, A. et al. Fermi surface, surface states, and surface reconstruction in Sr2RuO4 . Phys. Rev. Lett. 85, 5194–5197 (2000).

    Article  ADS  Google Scholar 

  16. Rice, T. M. & Sigrist, M. Sr2RuO4: a electronic analogue of 3He? J. Phys. Condens. matter 7, L643–L648 (1995).

    Article  ADS  Google Scholar 

  17. Raghu, S., Kapitulnik, A. & Kivelson, S. A. Hidden quasi-one-dimensional superconductivity in Sr2RuO4 . Phys. Rev. Lett. 105, 136401 (2010).

    Article  ADS  Google Scholar 

  18. Firmo, I. A. et al. Evidence from tunneling spectroscopy for a quasi-one-dimensional origin of superconductivity in Sr2RuO4 . Phys. Rev. B 88, 134521 (2013).

    Article  ADS  Google Scholar 

  19. Wang, Q. H. et al. Theory of superconductivity in a three-orbital model of Sr2RuO4 . Euro. Phys. Lett. 104, 17013 (2013).

    Article  ADS  Google Scholar 

  20. Scaffidi, T., Romers, J. C. & Simon, S. H. Pairing symmetry and dominant band in Sr2RuO4 . Phys. Rev. B 89, 220510(R) (2014).

    Article  ADS  Google Scholar 

  21. Iwasawa, H. et al. Orbital selectivity of the kink in the dispersion of Sr2RuO4 . Phys. Rev. B 72, 104514 (2005).

    Article  ADS  Google Scholar 

  22. Burganov, B. et al. Strain control of fermiology and many-body interaction in two dimensional ruthenates. Phys. Rev. Lett. 116, 197003 (2016).

    Article  ADS  Google Scholar 

  23. Ingle, N. J. et al. Quantitative analysis of Sr2RuO4 angle-resolved photoemission spectra: many-body interactions in a model Fermi liquid. Phys. Rev. B 72, 205114 (2005).

    Article  ADS  Google Scholar 

  24. Kim, C. et al. Self-energy analysis of multiple-bosonic mode coupling in Sr2RuO4 . J. Phys. Chem. Solids 72, 556–558 (2011).

    Article  ADS  Google Scholar 

  25. Hoffman, J. E. et al. Imaging quasiparticle interference in Bi2Sr2CaCu2O8+δ . Science 297, 1148–1151 (2002).

    Article  ADS  Google Scholar 

  26. Allan, M. P. et al. Imaging Cooper pairing of heavy fermions in CeCoIn5 . Nat. Phys. 9, 468–473 (2013).

    Article  Google Scholar 

  27. Zhou, B. B. et al. Visualizing nodal heavy fermion superconductivity in CeCoIn5 . Nat. Phys. 9, 474–479 (2013).

    Article  Google Scholar 

  28. Lee, J. et al. Heavy d-electron quasiparticle interference and real-space electronic structures of Sr3Ru2O7 . Nat. Phys. 5, 800–804 (2009).

    Article  Google Scholar 

  29. Kogar, A., Vig, S., Gan, Y. & Abbamonte, P. Temperature-resolution anomalies in the reconstruction of time dynamics from energy-loss experiments. J. Phys. B: At. Mol. Opt. Phys. 47, 124034 (2014).

    ADS  Google Scholar 

  30. Pennec, Y. et al. Cleaving-temperature dependence of layered-oxide surfaces. Phys. Rev. Lett. 101, 216103 (2008).

    Article  ADS  Google Scholar 

  31. Matzdorf, R. et al. Ferromagnetism stabilized by lattice distortion at the surface of the p-wave superconductor Sr2RuO4 . Science 289, 746–748 (2000).

    Article  ADS  Google Scholar 

  32. Stöger, B. et al. High chemical activity of a perovskite surface: reaction of CO with Sr3Ru2O7 . Phys. Rev. Lett. 113, 116101 (2014).

    Article  ADS  Google Scholar 

  33. Barker, B. I. et al. STM studies of individual Ti impurity atoms in Sr2RuO4 . Physica B 329–333, 1334–1335 (2003).

    Article  ADS  Google Scholar 

  34. Hlobil, P. et al. Tracing the electronic pairing glue in unconventional superconductors via inelastic scanning tunneling spectroscopy. Phys. Rev. Lett. 118, 167001 (2017).

    Article  ADS  Google Scholar 

  35. Fradkin, E. Field Theories of Condensed Matter Systems (Cambridge Univ. Press, 2013).

    Book  Google Scholar 

  36. Veenstra, C. N. et al. Determining the surface-to-bulk progression in the normal-state electronic structure of Sr2RuO4 by angle-resolved photoemission and density functional theory. Phys. Rev. Lett. 110, 097004 (2013).

    Article  ADS  Google Scholar 

  37. Liu, S. Y. et al. Fermi surface sheet-dependent band splitting in Sr2RuO4 revealed by high-resolution angle-resolved photoemission spectroscopy. Phys. Rev. B 86, 165112 (2012).

    Article  ADS  Google Scholar 

  38. Zabolotnyy, V. B. et al. Surface and bulk electronic structure of the unconventional superconductor Sr2RuO4: unusual splitting of the β band. New J. Phys. 14, 063039 (2012).

    Article  ADS  Google Scholar 

  39. Iwasawa, H. et al. High-energy anomaly in the band dispersion of the ruthenate superconductor. Phys. Rev. Lett. 109, 066404 (2012).

    Article  ADS  Google Scholar 

  40. Carlson, E. W., Orgad, D., Kivelson, S. A. & Emery, V. J. Dimensional crossover in quasi-one-dimensional and high-TC superconductors. Phys. Rev. B 62, 3422–3437 (2000).

    Article  ADS  Google Scholar 

  41. Biermann, S., Georges, A., Lichtenstein, A. & Giamarchi, T. Deconfinement transition and Luttinger to Fermi liquid crossover in quasi-one-dimensional systems. Phys. Rev. Lett. 87, 276405 (2001).

    Article  ADS  Google Scholar 

  42. Sidis, Y. et al. Evidence for incommensurate spin fluctuations in Sr2RuO4 . Phys. Rev. Lett. 83, 3320–3323 (1999).

    Article  ADS  Google Scholar 

  43. Allan, M. P. et al. Identifying the ‘fingerprint’ of antiferromagnetic spin fluctuations in iron pnictide superconductors. Nat. Phys. 11, 177–182 (2015).

    Article  Google Scholar 

  44. Lawler, M. J. et al. Intra-unit-cell electronic nematicity of the high-TC copper-oxide pseudogap states. Nature 466, 347–351 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Z. Wang, H. Lin, J.C. Davis and S. Kivelson for useful conversations. STM work was supported by US Department of Energy, Scanned Probe Division under Award Number DE-SC0014335. The work was supported in part by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4860. Y.M. acknowledges the support from the JSPS KAKENHI Grant No. JP15H05852. Theoretical work was supported in part by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant No. GBMF4305 at the Institute for Condensed Matter Theory of the University of Illinois (L.H.S. and Y.W.), and by a grant of the National Science Foundation No. DMR1408713 at the University of Illinois (E.F.). M-EELS experiments were supported by the Center for Emergent Superconductivity, DOE #DE-AC02-98CH10886. P.A. acknowledges support from Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4542. T.S. acknowledges the financial support of the Clarendon Fund Scholarship, the Merton College Domus and Prize Scholarships, and the University of Oxford.

Author information

Authors and Affiliations

Authors

Contributions

Z.W. and D.W. contributed equally to this work. Z.W., D.W. and V.M. designed the STM experiments, analysed the data and wrote the paper. STM experiments were performed by D.W., Z.W. and I.Z. Y.M. was responsible for single-crystal growth and structural analysis. A.D. helped with conceiving the experiment, data analysis and comparison with ARPES. E.F., L.H.S. and Y.W. conceived the theoretical explanation for this work. P.D., and T.S. performed analytical model calculations. M.R., S.V., A.K., A.H. and P.A. were involved in the M-EELS studies.

Corresponding author

Correspondence to Vidya Madhavan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1941 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Walkup, D., Derry, P. et al. Quasiparticle interference and strong electron–mode coupling in the quasi-one-dimensional bands of Sr2RuO4. Nature Phys 13, 799–805 (2017). https://doi.org/10.1038/nphys4107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing