Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Controlled state-to-state atom-exchange reaction in an ultracold atom–dimer mixture


Ultracold molecules offer remarkable opportunities for the study of chemical reactions close to zero temperature. Although significant progress has been achieved in exploring ultracold bimolecular reactions, the investigations are usually limited to measurements of the overall loss rates of the reactants. Detection of the reaction products will improve our understanding of the reaction mechanism and provide a unique opportunity to study the state-to-state reaction dynamics. Here we report on the direct observation of an exoergic atom-exchange reaction in an ultracold atom–dimer mixture. Both the atom and molecule products are observed and the state-to-state reaction rate coefficient is measured. By changing the magnetic field, the reaction can be switched on or off, and the rate coefficient can be controlled. The observed atom-exchange reaction is an effective spin-exchange interaction between the dimer and the atom and may be exploited to study the Kondo effect with ultracold atoms.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding energy of the Feshbach molecules and released energy in the reaction.
Figure 2: Preparation and detection scheme and observation of the atom products.
Figure 3: Preparation and detection scheme and observation of the molecule and atom products.
Figure 4: Reaction dynamics and the reaction rate coefficient.


  1. Krems, R. V. Cold controlled chemistry. Phys. Chem. Chem. Phys. 10, 4079–4092 (2008).

    Article  Google Scholar 

  2. Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).

    Article  ADS  Google Scholar 

  3. Bell, M. T. & Softley, T. P. Ultracold molecules and ultracold chemistry. Mol. Phys. 107, 99–132 (2009).

    Article  ADS  Google Scholar 

  4. Stwalley, W. C. Collisions and reactions of ultracold molecules. Can. J. Chem. 82, 709–712 (2004).

    Article  Google Scholar 

  5. Quéméner, G. & Julienne, P. S. Ultracold molecules under control. Chem. Rev. 112, 4949–5011 (2012).

    Article  Google Scholar 

  6. Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold potassium–rubidium molecules. Science 327, 853–857 (2010).

    Article  ADS  Google Scholar 

  7. Ni, K.-K. et al. Dipolar collisions of polar molecules in the quantum regime. Nature 464, 1324–1328 (2010).

    Article  ADS  Google Scholar 

  8. Zahzam, N., Vogt, T., Mudrich, M., Comparat, D. & Pillet, P. Atom-molecule collisions in an optically trapped gas. Phys. Rev. Lett. 96, 023202 (2006).

    Article  ADS  Google Scholar 

  9. Staanum, P., Kraft, S. D., Lange, J., Wester, R. & Weidemüller, M. Experimental investigation of ultracold atom-molecule collisions. Phys. Rev. Lett. 96, 023201 (2006).

    Article  ADS  Google Scholar 

  10. Hudson, E. R., Gilfoy, N. B., Kotochigova, S., Sage, J. M. & DeMille, D. Inelastic collisions of ultracold heteronuclear molecules in an optical trap. Phys. Rev. Lett. 100, 203201 (2008).

    Article  ADS  Google Scholar 

  11. Wang, T. T., Heo, M.-S., Rvachov, T. M., Cotta, D. A. & Ketterle, W. Deviation from universality in collisions of ultracold 6Li2 molecules. Phys. Rev. Lett. 110, 173203 (2013).

    Article  ADS  Google Scholar 

  12. Upadhyay, S. K. Chemical Kinetics and Reaction Dynamics (Springer & Anamaya Publishers New Delhi, 2006).

    Google Scholar 

  13. Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    Article  ADS  Google Scholar 

  14. Stwalley, W. C. Long-range molecules. Contemp. Phys. 19, 65–80 (1978).

    Article  ADS  Google Scholar 

  15. Knoop, S. et al. Magnetically controlled exchange process in an ultracold atom–dimer mixture. Phys. Rev. Lett. 104, 053201 (2010).

    Article  ADS  Google Scholar 

  16. Lompe, T. et al. Atom-dimer scattering in a three-component Fermi gas. Phys. Rev. Lett. 105, 103201 (2010).

    Article  ADS  Google Scholar 

  17. Nakajima, S., Horikoshi, M., Mukaiyama, T., Naidon, P. & Ueda, M. Nonuniversal Efimov atom–dimer resonances in a three-component mixture of 6Li. Phys. Rev. Lett. 105, 023201 (2010).

    Article  ADS  Google Scholar 

  18. Park, J. W. et al. Quantum degenerate Bose–Fermi mixture of chemically different atomic species with widely tunable interactions. Phys. Rev. A 85, 051602 (2012).

    Article  ADS  Google Scholar 

  19. Ospelkaus, C. et al. Ultracold heteronuclear molecules in a 3D optical lattice. Phys. Rev. Lett. 97, 120402 (2006).

    Article  ADS  Google Scholar 

  20. Zirbel, J. J. et al. Collisional stability of fermionic Feshbach molecules. Phys. Rev. Lett. 100, 143201 (2008).

    Article  ADS  Google Scholar 

  21. Klempt, C. et al. Radio-frequency association of heteronuclear Feshbach molecules. Phys. Rev. A 78, 061602 (2008).

    Article  ADS  Google Scholar 

  22. Wu, C.-H., Park, J. W., Ahmadi, P., Will, S. & Zwierlein, M. W. Ultracold fermionic Feshbach molecules of 23Na40K. Phys. Rev. Lett. 109, 085301 (2012).

    Article  ADS  Google Scholar 

  23. Chin, C. & Julienne, P. S. Radio-frequency transitions on weakly bound ultracold molecules. Phys. Rev. A 71, 012713 (2005).

    Article  ADS  Google Scholar 

  24. Braaten, E. & Hammer, H.-W. Universality in few-body systems with large scattering length. Phys. Rep. 428, 259–390 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  25. Braaten, E., Hammer, H.-W., Kang, D. & Platter, L. Three-body recombination of 6Li atoms with large negative scattering lengths. Phys. Rev. Lett. 103, 073202 (2009).

    Article  ADS  Google Scholar 

  26. D’Incao, J. P. & Esry, B. D. Ultracold three-body collisions near overlapping Feshbach resonances. Phys. Rev. Lett. 103, 083202 (2009).

    Article  ADS  Google Scholar 

  27. Bauer, J., Salomon, C. & Demler, E. Realizing a Kondo-correlated state with ultracold atoms. Phys. Rev. Lett. 111, 215304 (2013).

    Article  ADS  Google Scholar 

  28. Nishida, Y. Su(3) orbital Kondo effect with ultracold atoms. Phys. Rev. Lett. 111, 135301 (2013).

    Article  ADS  Google Scholar 

  29. Moore, M. G. & Vardi, A. Bose-enhanced chemistry: amplification of selectivity in the dissociation of molecular Bose–Einstein condensates. Phys. Rev. Lett. 88, 160402 (2002).

    Article  ADS  Google Scholar 

  30. Hu, M.-G. et al. Bose polarons in the strongly interacting regime. Phys. Rev. Lett. 117, 055301 (2016).

    Article  ADS  Google Scholar 

  31. Jørgensen, N. B. et al. Observation of attractive and repulsive polarons in a Bose–Einstein condensate. Phys. Rev. Lett. 117, 055302 (2016).

    Article  ADS  Google Scholar 

  32. Ulmanis, J. et al. Universality of weakly bound dimers and Efimov trimers close to Li–Cs Feshbach resonances. New J. Phys. 17, 055009 (2015).

    Article  ADS  Google Scholar 

  33. Viel, A. & Simoni, A. Feshbach resonances and weakly bound molecular states of boson–boson and boson–fermion NaK pairs. Phys. Rev. A 93, 042701 (2016).

    Article  ADS  Google Scholar 

Download references


We would like to thank X.-M. Yang for helpful discussions, and I. Nosske for carefully reading the manuscript. This work was supported by the National Natural Science Foundation of China (under Grant No.11521063, 11274292, 11374284, and 11425417), the National Fundamental Research Program (under Grant No. 2013CB922001 and 2013CB336800), and the Chinese Academy of Sciences.

Author information

Authors and Affiliations



Y.-A.C., B.Z. and J.-W.P. conceived the experiments. J.R., H.Y., L.L., D.-C.Z. and Y.-X.L. carried out the experiments. J.N. and B.Z. performed the numerical calculations. All authors analysed the data and contributed to the writing of the paper. B.Z. and J.-W.P. supervised the work.

Corresponding authors

Correspondence to Bo Zhao or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 378 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rui, J., Yang, H., Liu, L. et al. Controlled state-to-state atom-exchange reaction in an ultracold atom–dimer mixture. Nature Phys 13, 699–703 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing