Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inducing superconducting correlation in quantum Hall edge states

Abstract

The quantum Hall (QH) effect supports a set of chiral edge states at the boundary of a two-dimensional system. A superconductor (SC) contacting these states can provide correlations of the quasiparticles in the dissipationless edge states. Here we fabricated highly transparent and nanometre-scale SC junctions to graphene. We demonstrate that the QH edge states can couple via superconducting correlations through the SC electrode narrower than the superconducting coherence length. We observe that the chemical potential of the edge state exhibits a sign reversal across the SC electrode. This provides direct evidence of conversion of the incoming electron to the outgoing hole along the chiral edge state, termed crossed Andreev conversion (CAC). We show that CAC can successfully describe the temperature, bias and SC electrode width dependences. This hybrid SC/QH system could provide a novel route to create isolated non-Abelian anyonic zero modes, in resonance with the chiral edge states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic field dependence of Andreev reflection.
Figure 2: Temperature dependence of quantum Hall edge chemical potentials at B = 8 T.
Figure 3: Bias dependence of the negative response at B = 8 T and ν = 2.
Figure 4: Exponential width dependence on negative response at B = 8 T and ν = 2.

Similar content being viewed by others

References

  1. Rickhaus, P., Weiss, M., Marot, L. & Schönenberger, C. Quantum Hall effect in graphene with superconducting electrodes. Nano Lett. 12, 1942–1945 (2012).

    Article  ADS  Google Scholar 

  2. Wan, Z. et al. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures. Nat. Commun. 6, 7426 (2015).

    Article  ADS  Google Scholar 

  3. Amet, F. et al. Supercurrent in the quantum Hall regime. Science 352, 966–969 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  4. Vaezi, A. Fractional topological superconductor with fractionalized Majorana fermions. Phys. Rev. B 87, 035132 (2013).

    Article  ADS  Google Scholar 

  5. Vaezi, A. Superconducting analogue of the parafermion fractional quantum Hall states. Phys. Rev. X 4, 031009 (2014).

    Google Scholar 

  6. Takayanagi, H. & Kawakami, T. Superconducting proximity effect in the native inversion layer on InAs. Phys. Rev. Lett. 54, 2449–2452 (1985).

    Article  ADS  Google Scholar 

  7. Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., Vandersypen, L. M. K. & Morpurgo, A. F. Bipolar supercurrent in graphene. Nature 446, 56–59 (2007).

    Article  ADS  Google Scholar 

  8. Jeong, D. et al. Observation of supercurrent in PbIn-graphene-PbIn Josephson junction. Phys. Rev. B 83, 094503 (2011).

    Article  ADS  Google Scholar 

  9. Mizuno, N., Nielsen, B. & Du, X. Ballistic-like supercurrent in suspended graphene Josephson weak links. Nat. Commun. 4, 2716 (2013).

    Article  ADS  Google Scholar 

  10. Lee, G.-H., Kim, S., Jhi, S.-H. & Lee, H.-J. Ultimately short ballistic vertical graphene Josephson junctions. Nat. Commun. 6, 6181 (2015).

    Article  ADS  Google Scholar 

  11. Calado, V. E. et al. Ballistic Josephson junctions in edge-contacted graphene. Nat. Nanotech. 10, 761–764 (2015).

    Article  ADS  Google Scholar 

  12. Ben Shalom, M. et al. Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nat. Phys. 12, 318–322 (2015).

    Article  Google Scholar 

  13. Efetov, D. K. et al. Specular interband Andreev reflections at van der Waals interfaces between graphene and NbSe2 . Nat. Phys. 12, 328–332 (2015).

    Article  Google Scholar 

  14. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  15. Bolotin, K. I., Ghahari, F., Shulman, M. D., Stormer, H. L. & Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 462, 196–199 (2009).

    Article  ADS  Google Scholar 

  16. Hoppe, H., Zülicke, U. & Schön, G. Andreev reflection in strong magnetic fields. Phys. Rev. Lett. 84, 1804–1807 (2000).

    Article  ADS  Google Scholar 

  17. Chtchelkatchev, N. M. & Burmistrov, I. S. Conductance oscillations with magnetic field of a two-dimensional electron gas-superconductor junction. Phys. Rev. B 75, 214510 (2007).

    Article  ADS  Google Scholar 

  18. Khaymovich, I. M., Chtchelkatchev, N. M., Shereshevskii, I. A. & Mel’nikov, A. S. Andreev transport in two-dimensional normal-superconducting systems in strong magnetic fields. Europhys. Lett. 91, 17005 (2010).

    Article  ADS  Google Scholar 

  19. Clarke, D. J., Alicea, J. & Shtengel, K. Exotic circuit elements from zero-modes in hybrid superconductor-quantum-Hall systems. Nat. Phys. 10, 877–882 (2014).

    Article  Google Scholar 

  20. Hou, Z., Xing, Y., Guo, A.-M. & Sun, Q.-F. Crossed Andreev effects in two-dimensional quantum Hall systems. Phys. Rev. B 94, 064516 (2016).

    Article  ADS  Google Scholar 

  21. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Chiral topological superconductor from the quantum Hall state. Phys. Rev. B 82, 184516 (2010).

    Article  ADS  Google Scholar 

  22. Lindner, N. H., Berg, E., Refael, G. & Stern, A. Fractionalizing Majorana fermions: non-Abelian statistics on the edges of Abelian quantum Hall states. Phys. Rev. X 2, 041002 (2012).

    Google Scholar 

  23. Clarke, D. J., Alicea, J. & Shtengel, K. Exotic non-Abelian anyons from conventional fractional quantum Hall states. Nat. Commun. 4, 1348 (2013).

    Article  ADS  Google Scholar 

  24. Mong, R. S. K. et al. Universal topological quantum computation from a superconductor-Abelian quantum Hall heterostructure. Phys. Rev. X 4, 011036 (2014).

    Google Scholar 

  25. Alicea, J. & Fendley, P. Topological phases with parafermions: theory and blueprints. Annu. Rev. Condens. Matter Phys. 7, 119–139 (2016).

    Article  ADS  Google Scholar 

  26. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  ADS  Google Scholar 

  27. Dynes, R. C., Narayanamurti, V. & Garno, J. P. Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor. Phys. Rev. Lett. 41, 1509–1512 (1978).

    Article  ADS  Google Scholar 

  28. Naidyuk, Y. G., Häussler, R. & Löhneysen, H. v. Magnetic field dependence of the Andreev reflection structure in the conductivity of S-N point contacts. Physica B 218, 122–125 (1996).

    Article  ADS  Google Scholar 

  29. Naidyuk, Y. G., Löhneysen, H. v. & Yanson, I. K. Temperature and magnetic-field dependence of the superconducting order parameter in Zn studied by point-contact spectroscopy. Phys. Rev. B 54, 16077–16081 (1996).

    Article  ADS  Google Scholar 

  30. Eskildsen, M. R. et al. Vortex imaging in the π band of magnesium diboride. Phys. Rev. Lett. 89, 187003 (2002).

    Article  ADS  Google Scholar 

  31. Bugoslavsky, Y. et al. Effect of magnetic field on the two superconducting gaps in MgB2 . Phys. Rev. B 69, 132508 (2004).

    Article  ADS  Google Scholar 

  32. Miyoshi, Y., Bugoslavsky, Y. & Cohen, L. F. Andreev reflection spectroscopy of niobium point contacts in a magnetic field. Phys. Rev. B 72, 012502 (2005).

    Article  ADS  Google Scholar 

  33. Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    Article  ADS  Google Scholar 

  34. Chockalingam, S. P. et al. Tunneling studies in a homogeneously disordered s-wave superconductor: NbN. Phys. Rev. B 79, 094509 (2009).

    Article  ADS  Google Scholar 

  35. Chockalingam, S. P., Chand, M., Jesudasan, J., Tripathi, V. & Raychaudhuri, P. Superconducting properties and Hall effect of epitaxial NbN thin films. Phys. Rev. B 77, 214503 (2008).

    Article  ADS  Google Scholar 

  36. Mondal, M. et al. Enhancement of the finite-frequency superfluid response in the pseudogap regime of strongly disordered superconducting films. Sci. Rep. 3, 1357 (2013).

    Article  Google Scholar 

  37. Wakamura, T., Hasegawa, N., Ohnishi, K., Niimi, Y. & Otani, Y. Spin injection into a superconductor with strong spin–orbit coupling. Phys. Rev. Lett. 112, 036602 (2014).

    Article  ADS  Google Scholar 

  38. Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    Article  ADS  Google Scholar 

  39. Lee, G.-H., Park, G.-H. & Lee, H.-J. Observation of negative refraction of Dirac fermions in graphene. Nat. Phys. 11, 925–929 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S.-C. Zhang, B. Halperin and J. Alicea for fruitful discussions. The major experimental work, including sample preparation and measurement, is supported by DOE (DE-SC0012260). The Harvard collaboration was supported by the Science and Technology Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319. G.-H.L. acknowledges support from the Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2012M3A7B4049966). P.K. acknowledges partial support from the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4543 and ARO (W911NF-14-1-0638). K.-F.H. is supported by NSF (EFRI 2-DARE 1542807). A.Y. acknowledges support from the US DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award de-sc0001819. D.S.W. acknowledges the support from the National Science Foundation Graduate Research Fellowship under Grant No. DGE1144152. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan and JSPS KAKENHI Grant Numbers JP26248061, JP15K21722 and JP25106006. A portion of this work was performed at the Center for Nanoscale Systems at Harvard, supported in part by an NSF NNIN award ECS-00335765.

Author information

Authors and Affiliations

Authors

Contributions

G.-H.L. and P.K. conceived the idea and designed the project. P.K. supervised the project. G.-H.L., K.-F.H. and S.H. fabricated the devices. T.T. and K.W. provided single crystals of hBN. G.-H.L. and D.S.W. performed the measurements. G.-H.L. and P.K. analysed the data and wrote the manuscript. G.-H.L., K.-F.H., D.K.E., D.S.W., S.H., A.Y. and P.K. contributed to the discussion.

Corresponding author

Correspondence to Philip Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 635 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, GH., Huang, KF., Efetov, D. et al. Inducing superconducting correlation in quantum Hall edge states. Nature Phys 13, 693–698 (2017). https://doi.org/10.1038/nphys4084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4084

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing