Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Search for dark matter at colliders

Abstract

Among the numerous proposals to explain the nature of dark matter, there is the weakly interacting massive particle (WIMP) scenario, which is based on a simple assumption that dark matter was in thermal equilibrium in the early hot Universe, and its particles have mass and interactions not too different from the massive particles in the standard model. In this Progress Article we overview the inference of WIMP production at high-energy colliders, with a particular focus on searches at the Large Hadron Collider.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of DM interactions and their corresponding experimental detection techniques, with time flowing from left to right.
Figure 2: Schematic illustration of missing transverse momentum from DM production inferred from the recoil of visible particles, in a general purpose LHC detector.
Figure 3: A typical production and decay chain involving SUSY particles.
Figure 4: Schematic illustration of the basic SM–DM interactions at colliders, with time flowing from left to right.
Figure 5: Sketch of the constraints on a simplified model of WIMP DM where a particle with axial vector couplings of 1.0 and 0.25 to DM and SM respectively is exchanged.
Figure 6: Sketch of the comparison between constraints set on spin-dependent WIMP–proton scattering cross-section for DM searches at colliders (red line) and at direct detection experiment probing different regions in WIMP mass (green lines).

Similar content being viewed by others

References

  1. Bertone, G., Hooper, D. & Silk, J. Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005).

    ADS  Google Scholar 

  2. Ade, P. A. R. et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

    Google Scholar 

  3. Gelmini, G. B. TASI 2014 Lectures: The Hunt For Dark Matter. Preprint at http://arxiv.org/abs/1502.01320 (2015).

  4. The Large Hadron Collider (CERN, 2017); http://home.cern/topics/large-hadron-collider

  5. The Large Electron-Positron Collider (CERN, 2017; https://home.cern/about/accelerators/large-electron-positron-collider

  6. The Tevatron: 28 Years of Discovery and Innovation (FNAL, 2014); https://www.fnal.gov/pub/tevatron/index.html

  7. Gaskins, J. M. A review of indirect searches for particle dark matter. Preprint at http://arxiv.org/abs/1604.00014 (2016).

  8. Marrodan Undagoitia, T. & Rauch, L. Dark matter direct-detection experiments. J. Phys. G 43, 013001 (2016).

    ADS  Google Scholar 

  9. Feng, J. L. Collider physics and cosmology. Class. Quantum Gravity 25, 114003 (2008).

    ADS  MATH  Google Scholar 

  10. Fox, P. J., Harnik, R., Kopp, J. & Tsai, Y. LEP shines light on dark matter. Phys. Rev. D 84, 014028 (2011).

    ADS  Google Scholar 

  11. Ellis, J. R., Nanopoulos, D. V., Roszkowski, L. & Schramm, D. N. Dark matter in the light of LEP. Phys. Lett. B 245, 251–257 (1990).

    ADS  Google Scholar 

  12. Bai, Y., Fox, P. J. & Harnik, R. The Tevatron at the frontier of dark matter direct detection. J. High Energy Phys. 2010, 048 (2010).

    ADS  Google Scholar 

  13. Evans, L. & Bryant, P. LHC machine. J. Instrum. 3, S08001 (2008).

    Google Scholar 

  14. ATLAS Collaboration The ATLAS experiment at the CERN Large Hadron Collider. J. Instrum. 3, S08003 (2008).

  15. ALICE Collaboration The ALICE experiment at the CERN LHC. J. Instrum. 3, S08002 (2008).

  16. CMS Collaboration The CMS experiment at the CERN LHC. J. Instrum. 3, S08004 (2008).

  17. LHCb Collaboration The LHCb detector at the LHC. J. Instrum. 3, S08005 (2008).

  18. ATLAS and CMS Collaborations Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at and 8 TeV. J. High Energy Phys. 2016, 045 (2016).

  19. Kaplan, D. B. & Georgi, H. SU(2) x U(1) breaking by vacuum misalignment. Phys. Lett. B 136, 183–186 (1984).

    ADS  Google Scholar 

  20. Arkani-Hamed, N., Cohen, A. G. & Georgi, H. Electroweak symmetry breaking from dimensional deconstruction. Phys. Lett. B 513, 232–240 (2001).

    ADS  MATH  Google Scholar 

  21. Agashe, K., Delgado, A., May, M. J. & Sundrum, R. RS1, custodial isospin and precision tests. J. High Energy Phys. 2003, 050 (2003).

    Google Scholar 

  22. Arkani-Hamed, N., Dimopoulos, S. & Dvali, G. R. The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263–272 (1998).

    ADS  MATH  Google Scholar 

  23. Randall, L. & Sundrum, R. A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370–3373 (1999).

    ADS  MathSciNet  MATH  Google Scholar 

  24. Randall, L. & Sundrum, R. An alternative to compactification. Phys. Rev. Lett. 83, 4690–4693 (1999).

    ADS  MathSciNet  MATH  Google Scholar 

  25. Chung, D. J. H. et al. The soft supersymmetry breaking Lagrangian: theory and applications. Phys. Rep. 407, 1–203 (2005).

    ADS  Google Scholar 

  26. Alwall, J., Schuster, P. & Toro, N. Simplified models for a first characterization of new physics at the LHC. Phys. Rev. D 79, 075020 (2009).

    ADS  Google Scholar 

  27. Kraml, S. et al. SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry. Eur. Phys. J. C 74, 2868 (2014).

    ADS  Google Scholar 

  28. Gutschow, C. & Marshall, Z. Setting limits on supersymmetry using simplified models. Preprint at http://arxiv.org/abs/1202.2662 (2012).

  29. Patrignani, C. Review of particle physics. Chin. Phys. C 40, 100001 (2016).

    ADS  Google Scholar 

  30. Birkedal, A., Matchev, K. & Perelstein, M. Dark matter at colliders: a model independent approach. Phys. Rev. D 70, 077701 (2004).

    ADS  Google Scholar 

  31. Petriello, F. J., Quackenbush, S. & Zurek, K. M. The invisible Z′ at the CERN LHC. Phys. Rev. D 77, 115020 (2008).

    ADS  Google Scholar 

  32. Gershtein, Y., Petriello, F., Quackenbush, S. & Zurek, K. M. Discovering hidden sectors with mono-photon Z′ searches. Phys. Rev. D 78, 095002 (2008).

    ADS  Google Scholar 

  33. Cao, Q.-H., Chen, C.-R., Li, C. S. & Zhang, H. Effective dark matter model: relic density, CDMS II, Fermi LAT and LHC. J. High Energy Phys. 2011, 018 (2011).

    ADS  Google Scholar 

  34. Beltran, M., Hooper, D., Kolb, E. W., Krusberg, Z. A. & Tait, T. M. Maverick dark matter at colliders. J. High Energy Phys. 2010, 037 (2010).

    ADS  Google Scholar 

  35. Goodman, J. et al. Constraints on dark matter from colliders. Phys. Rev. D 82, 116010 (2010).

    ADS  Google Scholar 

  36. Fox, P. J., Harnik, R., Kopp, J. & Tsai, Y. Missing energy signatures of dark matter at the LHC. Phys. Rev. D 85, 056011 (2012).

    ADS  Google Scholar 

  37. Aaltonen, T. et al. Search for large extra dimensions in final states containing one photon or jet and large missing transverse energy produced in collisions at = 1.96-TeV. Phys. Rev. Lett. 101, 181602 (2008).

    ADS  Google Scholar 

  38. Fermi, E. Tentativo di una teoria dei raggi β. Il Nuovo Cimento 11, 1–19 (2008).

    ADS  MATH  Google Scholar 

  39. De Simone, A. & Jacques, T. Simplified models vs. effective field theory approaches in dark matter searches. Eur. Phys. J. C 76, 367 (2016).

    ADS  Google Scholar 

  40. Buchmueller, O., Dolan, M. J. & McCabe, C. Beyond effective field theory for dark matter searches at the LHC. J. High Energy Phys. 2014, 025 (2014).

    Google Scholar 

  41. ATLAS Collaboration Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at TeV with the ATLAS detector. Eur. Phys. J. C 75, 299 (2015); erratum C75, 408 (2015).

  42. CMS Collaboration Search for dark matter, extra dimensions, and unparticles in monojet events in proton-proton collisions at TeV. Eur. Phys. J. C 75, 235 (2015).

  43. Abercrombie, D. et al. Dark matter benchmark models for early LHC Run-2 searches: Report of the ATLAS/CMS Dark Matter Forum. Preprint at https://arxiv.org/abs/1507.00966 (2015).

  44. Escudero, M., Berlin, A., Hooper, D. & Lin, M.-X. Toward (finally!) ruling out Z and Higgs mediated dark matter models. J. Cosmol. Astropart. Phys. 2016, 029 (2016).

    Google Scholar 

  45. Cotta, R., Hewett, J., Le, M. & Rizzo, T. Bounds on dark matter interactions with electroweak gauge bosons. Phys. Rev. D 88, 116009 (2013).

    ADS  Google Scholar 

  46. Golling, T. et al. Physics at a 100 TeV pp collider: beyond the standard model phenomena. Preprint at http://dx.doi.org/10.1038/1606.00947 (2016).

  47. ATLAS Collaboration Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector. J. High Energy Phys. 11, 206 (2015).

  48. CMS Collaboration Searches for invisible decays of the Higgs boson in pp collisions at , 8, and 13 TeV. Preprint at http://arxiv.org/abs/1610.09218 (2016).

  49. Chala, M., Kahlhoefer, F., McCullough, M., Nardini, G. & Schmidt-Hoberg, K. Constraining dark sectors with monojets and dijets. J. High Energy Phys. 2015, 089 (2015).

    Google Scholar 

  50. ATLAS Collaboration Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at TeV using the ATLAS detector. Phys. Rev. D 94, 032005 (2016).

  51. ATLAS Collaboration Search for new phenomena in events with a photon and missing transverse momentum in pp collisions at TeV with the ATLAS detector. J. High Energy Phys. 2016, 059 (2016).

  52. ATLAS Collaboration Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at TeV with the ATLAS detector. Phys.Lett. B 763, 251–268 (2016).

  53. CMS Collaboration Search for dark matter in proton-proton collisions at 8 TeV with missing transverse momentum and vector boson tagged jets. J. High Energy Phys. 12, 083 (2016).

  54. Kahlhoefer, F., Schmidt-Hoberg, K., Schwetz, T. & Vogl, S. Implications of unitarity and gauge invariance for simplified dark matter models. J. High Energy Phys. 2016, 016 (2016).

    Google Scholar 

  55. Carpenter, L. et al. Mono-Higgs-boson: a new collider probe of dark matter. Phys. Rev. D 89, 075017 (2014).

    ADS  Google Scholar 

  56. Berlin, A., Lin, T. & Wang, L.-T. Mono-Higgs detection of dark matter at the LHC. J. High Energy Phys. 1406, 078 (2014).

    ADS  Google Scholar 

  57. Harris, R. M. & Kousouris, K. Searches for dijet resonances at hadron colliders. Int. J. Mod. Phys. A 26, 5005–5055 (2011).

    ADS  Google Scholar 

  58. ATLAS Collaboration Search for new phenomena in dijet mass and angular distributions from pp collisions at 13 TeV with the ATLAS detector. Phys. Lett. B 754, 302–322 (2016).

  59. CMS Collaboration Search for dijet resonances in proton-proton collisions at 13 TeV and constraints on dark matter and other models. Phys. Lett. B.

  60. Fairbairn, M., Heal, J., Kahlhoefer, F. & Tunney, P. Constraints on Z’ models from LHC dijet searches and implications for dark matter. J. High Energy Phys. 2016, 018 (2016).

    Google Scholar 

  61. CMS Collaboration Search for narrow resonances in dijet final states at 8 TeV with the novel CMS technique of data scouting. Phys. Rev. Lett. 117, 031802 (2016).

  62. An, H., Ji, X. & Wang, L.-T. Light dark matter and Z′ dark force at colliders. J. High Energy Phys. 2012, 182 (2012).

    Google Scholar 

  63. ATLAS Collaboration Dark matter interpretations of ATLAS searches for the electroweak production of supersymmetric particles in TeV proton-proton collisions. J. High Energy Phys. 2016, 175 (2016).

  64. ATLAS Collaboration Summary of the ATLAS experiment’s sensitivity to supersymmetry after LHC Run 1 - interpreted in the phenomenological MSSM. J. High Energy Phys. 10, 134 (2015).

  65. CMS Collaboration Phenomenological MSSM interpretation of CMS searches in pp collisions at = 7 and 8 TeV. J. High Energy Phys. 10, 129 (2016).

  66. Bagnaschi, E. A. et al. Supersymmetric dark matter after LHC run 1. Eur. Phys. J. C 75, 500 (2015).

    ADS  Google Scholar 

  67. Baer, H., Barger, V. & Serce, H. SUSY under siege from direct and indirect WIMP detection experiments. Phys. Rev. B 94, 115019 (2016).

    Google Scholar 

  68. Busoni, G. et al. Recommendations on Presenting LHC Searches for Missing Transverse Energy Signals Using Simplified s-Channel Models of Dark Matter. Preprint at http://arxiv.org/abs/1603.04156 (2016).

  69. Agnese, R. et al. New results from the search for low-mass weakly interacting massive particles with the CDMS low ionization threshold experiment. Phys. Rev. Lett. 116, 071301 (2016).

    ADS  Google Scholar 

  70. Angloher, G. et al. Results on light dark matter particles with a low-threshold CRESST-II detector. Eur. Phys. J. C 76, 25 (2016).

    ADS  Google Scholar 

  71. Strauss, R. et al. Exploring low-mass dark matter with CRESST. J. Low Temp. Phys. 184, 866–872 (2016).

    ADS  Google Scholar 

  72. Alexander, J. et al. Dark Sectors 2016 Workshop: Community Report. Preprint at http://arxiv.org/abs/1608.08632 (2016).

  73. Spergel, D. N. & Steinhardt, P. J. Observational evidence for selfinteracting cold dark matter. Phys. Rev. Lett. 84, 3760–3763 (2000).

    ADS  Google Scholar 

  74. Ilten, P., Soreq, Y., Thaler, J., Williams, M. & Xue, W. Proposed inclusive dark photon search at LHCb. Phys. Rev. Lett. 116, 251803 (2016).

    ADS  Google Scholar 

  75. Curtin, D., Essig, R., Gori, S. & Shelton, J. Illuminating dark photons with high-energy colliders. J. High Energy Phys. 20125, 157 (2015).

    Google Scholar 

  76. ATLAS Collaboration Search for long-lived, weakly interacting particles that decay to displaced hadronic jets in proton-proton collisions at TeV with the ATLAS detector. Phys. Rev. D 92, 012010 (2015).

  77. ATLAS Collaboration Search for long-lived neutral particles decaying into lepton jets in proton-proton collisions at TeV with the ATLAS detector. J. High Energy Phys. 11, 088 (2014).

  78. CMS Collaboration Search for long-lived charged particles in proton-proton collisions at 13 TeV. Phys. Rev. D 94, 112004 (2016).

  79. CMS Collaboration Search for long-lived neutral particles decaying to Quark-Antiquark pairs in proton-proton collisions at 8 TeV. Phys. Rev. D 91, 012007 (2015).

  80. CMS Collaboration Search for dark matter and unparticles in events with a Z boson and missing transverse momentum in proton-proton collisions at 13 TeV. Preprint at http://arxiv.org/abs/1701.02042 (2017).

  81. Agnese, R. et al. Projected Sensitivity of the SuperCDMS SNOLAB experiment. Preprint at http://arxiv.org/abs/1610.00006 (2016).

  82. Akerib, D. S. et al. Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett. 118, 021303 (2017).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Boveia, M. Danninger, A. De Roeck, T. J. Khoo, G. Landsberg, and C. Young for valuable comments on this manuscript. Work by C.D. is part of a project that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No 679305) and from the Swedish Research Council. The work of L.-T.W. was supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through grant NSF PHY-1125897 and an endowment from the Kavli Foundation and its founder F. Kavli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-Tao Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchmueller, O., Doglioni, C. & Wang, LT. Search for dark matter at colliders. Nature Phys 13, 217–223 (2017). https://doi.org/10.1038/nphys4054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4054

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing