Abstract
Among the numerous proposals to explain the nature of dark matter, there is the weakly interacting massive particle (WIMP) scenario, which is based on a simple assumption that dark matter was in thermal equilibrium in the early hot Universe, and its particles have mass and interactions not too different from the massive particles in the standard model. In this Progress Article we overview the inference of WIMP production at high-energy colliders, with a particular focus on searches at the Large Hadron Collider.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bertone, G., Hooper, D. & Silk, J. Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005).
Ade, P. A. R. et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).
Gelmini, G. B. TASI 2014 Lectures: The Hunt For Dark Matter. Preprint at http://arxiv.org/abs/1502.01320 (2015).
The Large Hadron Collider (CERN, 2017); http://home.cern/topics/large-hadron-collider
The Large Electron-Positron Collider (CERN, 2017; https://home.cern/about/accelerators/large-electron-positron-collider
The Tevatron: 28 Years of Discovery and Innovation (FNAL, 2014); https://www.fnal.gov/pub/tevatron/index.html
Gaskins, J. M. A review of indirect searches for particle dark matter. Preprint at http://arxiv.org/abs/1604.00014 (2016).
Marrodan Undagoitia, T. & Rauch, L. Dark matter direct-detection experiments. J. Phys. G 43, 013001 (2016).
Feng, J. L. Collider physics and cosmology. Class. Quantum Gravity 25, 114003 (2008).
Fox, P. J., Harnik, R., Kopp, J. & Tsai, Y. LEP shines light on dark matter. Phys. Rev. D 84, 014028 (2011).
Ellis, J. R., Nanopoulos, D. V., Roszkowski, L. & Schramm, D. N. Dark matter in the light of LEP. Phys. Lett. B 245, 251–257 (1990).
Bai, Y., Fox, P. J. & Harnik, R. The Tevatron at the frontier of dark matter direct detection. J. High Energy Phys. 2010, 048 (2010).
Evans, L. & Bryant, P. LHC machine. J. Instrum. 3, S08001 (2008).
ATLAS Collaboration The ATLAS experiment at the CERN Large Hadron Collider. J. Instrum. 3, S08003 (2008).
ALICE Collaboration The ALICE experiment at the CERN LHC. J. Instrum. 3, S08002 (2008).
CMS Collaboration The CMS experiment at the CERN LHC. J. Instrum. 3, S08004 (2008).
LHCb Collaboration The LHCb detector at the LHC. J. Instrum. 3, S08005 (2008).
ATLAS and CMS Collaborations Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at and 8 TeV. J. High Energy Phys. 2016, 045 (2016).
Kaplan, D. B. & Georgi, H. SU(2) x U(1) breaking by vacuum misalignment. Phys. Lett. B 136, 183–186 (1984).
Arkani-Hamed, N., Cohen, A. G. & Georgi, H. Electroweak symmetry breaking from dimensional deconstruction. Phys. Lett. B 513, 232–240 (2001).
Agashe, K., Delgado, A., May, M. J. & Sundrum, R. RS1, custodial isospin and precision tests. J. High Energy Phys. 2003, 050 (2003).
Arkani-Hamed, N., Dimopoulos, S. & Dvali, G. R. The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263–272 (1998).
Randall, L. & Sundrum, R. A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370–3373 (1999).
Randall, L. & Sundrum, R. An alternative to compactification. Phys. Rev. Lett. 83, 4690–4693 (1999).
Chung, D. J. H. et al. The soft supersymmetry breaking Lagrangian: theory and applications. Phys. Rep. 407, 1–203 (2005).
Alwall, J., Schuster, P. & Toro, N. Simplified models for a first characterization of new physics at the LHC. Phys. Rev. D 79, 075020 (2009).
Kraml, S. et al. SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry. Eur. Phys. J. C 74, 2868 (2014).
Gutschow, C. & Marshall, Z. Setting limits on supersymmetry using simplified models. Preprint at http://arxiv.org/abs/1202.2662 (2012).
Patrignani, C. Review of particle physics. Chin. Phys. C 40, 100001 (2016).
Birkedal, A., Matchev, K. & Perelstein, M. Dark matter at colliders: a model independent approach. Phys. Rev. D 70, 077701 (2004).
Petriello, F. J., Quackenbush, S. & Zurek, K. M. The invisible Z′ at the CERN LHC. Phys. Rev. D 77, 115020 (2008).
Gershtein, Y., Petriello, F., Quackenbush, S. & Zurek, K. M. Discovering hidden sectors with mono-photon Z′ searches. Phys. Rev. D 78, 095002 (2008).
Cao, Q.-H., Chen, C.-R., Li, C. S. & Zhang, H. Effective dark matter model: relic density, CDMS II, Fermi LAT and LHC. J. High Energy Phys. 2011, 018 (2011).
Beltran, M., Hooper, D., Kolb, E. W., Krusberg, Z. A. & Tait, T. M. Maverick dark matter at colliders. J. High Energy Phys. 2010, 037 (2010).
Goodman, J. et al. Constraints on dark matter from colliders. Phys. Rev. D 82, 116010 (2010).
Fox, P. J., Harnik, R., Kopp, J. & Tsai, Y. Missing energy signatures of dark matter at the LHC. Phys. Rev. D 85, 056011 (2012).
Aaltonen, T. et al. Search for large extra dimensions in final states containing one photon or jet and large missing transverse energy produced in collisions at = 1.96-TeV. Phys. Rev. Lett. 101, 181602 (2008).
Fermi, E. Tentativo di una teoria dei raggi β. Il Nuovo Cimento 11, 1–19 (2008).
De Simone, A. & Jacques, T. Simplified models vs. effective field theory approaches in dark matter searches. Eur. Phys. J. C 76, 367 (2016).
Buchmueller, O., Dolan, M. J. & McCabe, C. Beyond effective field theory for dark matter searches at the LHC. J. High Energy Phys. 2014, 025 (2014).
ATLAS Collaboration Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at TeV with the ATLAS detector. Eur. Phys. J. C 75, 299 (2015); erratum C75, 408 (2015).
CMS Collaboration Search for dark matter, extra dimensions, and unparticles in monojet events in proton-proton collisions at TeV. Eur. Phys. J. C 75, 235 (2015).
Abercrombie, D. et al. Dark matter benchmark models for early LHC Run-2 searches: Report of the ATLAS/CMS Dark Matter Forum. Preprint at https://arxiv.org/abs/1507.00966 (2015).
Escudero, M., Berlin, A., Hooper, D. & Lin, M.-X. Toward (finally!) ruling out Z and Higgs mediated dark matter models. J. Cosmol. Astropart. Phys. 2016, 029 (2016).
Cotta, R., Hewett, J., Le, M. & Rizzo, T. Bounds on dark matter interactions with electroweak gauge bosons. Phys. Rev. D 88, 116009 (2013).
Golling, T. et al. Physics at a 100 TeV pp collider: beyond the standard model phenomena. Preprint at http://dx.doi.org/10.1038/1606.00947 (2016).
ATLAS Collaboration Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector. J. High Energy Phys. 11, 206 (2015).
CMS Collaboration Searches for invisible decays of the Higgs boson in pp collisions at , 8, and 13 TeV. Preprint at http://arxiv.org/abs/1610.09218 (2016).
Chala, M., Kahlhoefer, F., McCullough, M., Nardini, G. & Schmidt-Hoberg, K. Constraining dark sectors with monojets and dijets. J. High Energy Phys. 2015, 089 (2015).
ATLAS Collaboration Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at TeV using the ATLAS detector. Phys. Rev. D 94, 032005 (2016).
ATLAS Collaboration Search for new phenomena in events with a photon and missing transverse momentum in pp collisions at TeV with the ATLAS detector. J. High Energy Phys. 2016, 059 (2016).
ATLAS Collaboration Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at TeV with the ATLAS detector. Phys.Lett. B 763, 251–268 (2016).
CMS Collaboration Search for dark matter in proton-proton collisions at 8 TeV with missing transverse momentum and vector boson tagged jets. J. High Energy Phys. 12, 083 (2016).
Kahlhoefer, F., Schmidt-Hoberg, K., Schwetz, T. & Vogl, S. Implications of unitarity and gauge invariance for simplified dark matter models. J. High Energy Phys. 2016, 016 (2016).
Carpenter, L. et al. Mono-Higgs-boson: a new collider probe of dark matter. Phys. Rev. D 89, 075017 (2014).
Berlin, A., Lin, T. & Wang, L.-T. Mono-Higgs detection of dark matter at the LHC. J. High Energy Phys. 1406, 078 (2014).
Harris, R. M. & Kousouris, K. Searches for dijet resonances at hadron colliders. Int. J. Mod. Phys. A 26, 5005–5055 (2011).
ATLAS Collaboration Search for new phenomena in dijet mass and angular distributions from pp collisions at 13 TeV with the ATLAS detector. Phys. Lett. B 754, 302–322 (2016).
CMS Collaboration Search for dijet resonances in proton-proton collisions at 13 TeV and constraints on dark matter and other models. Phys. Lett. B.
Fairbairn, M., Heal, J., Kahlhoefer, F. & Tunney, P. Constraints on Z’ models from LHC dijet searches and implications for dark matter. J. High Energy Phys. 2016, 018 (2016).
CMS Collaboration Search for narrow resonances in dijet final states at 8 TeV with the novel CMS technique of data scouting. Phys. Rev. Lett. 117, 031802 (2016).
An, H., Ji, X. & Wang, L.-T. Light dark matter and Z′ dark force at colliders. J. High Energy Phys. 2012, 182 (2012).
ATLAS Collaboration Dark matter interpretations of ATLAS searches for the electroweak production of supersymmetric particles in TeV proton-proton collisions. J. High Energy Phys. 2016, 175 (2016).
ATLAS Collaboration Summary of the ATLAS experiment’s sensitivity to supersymmetry after LHC Run 1 - interpreted in the phenomenological MSSM. J. High Energy Phys. 10, 134 (2015).
CMS Collaboration Phenomenological MSSM interpretation of CMS searches in pp collisions at = 7 and 8 TeV. J. High Energy Phys. 10, 129 (2016).
Bagnaschi, E. A. et al. Supersymmetric dark matter after LHC run 1. Eur. Phys. J. C 75, 500 (2015).
Baer, H., Barger, V. & Serce, H. SUSY under siege from direct and indirect WIMP detection experiments. Phys. Rev. B 94, 115019 (2016).
Busoni, G. et al. Recommendations on Presenting LHC Searches for Missing Transverse Energy Signals Using Simplified s-Channel Models of Dark Matter. Preprint at http://arxiv.org/abs/1603.04156 (2016).
Agnese, R. et al. New results from the search for low-mass weakly interacting massive particles with the CDMS low ionization threshold experiment. Phys. Rev. Lett. 116, 071301 (2016).
Angloher, G. et al. Results on light dark matter particles with a low-threshold CRESST-II detector. Eur. Phys. J. C 76, 25 (2016).
Strauss, R. et al. Exploring low-mass dark matter with CRESST. J. Low Temp. Phys. 184, 866–872 (2016).
Alexander, J. et al. Dark Sectors 2016 Workshop: Community Report. Preprint at http://arxiv.org/abs/1608.08632 (2016).
Spergel, D. N. & Steinhardt, P. J. Observational evidence for selfinteracting cold dark matter. Phys. Rev. Lett. 84, 3760–3763 (2000).
Ilten, P., Soreq, Y., Thaler, J., Williams, M. & Xue, W. Proposed inclusive dark photon search at LHCb. Phys. Rev. Lett. 116, 251803 (2016).
Curtin, D., Essig, R., Gori, S. & Shelton, J. Illuminating dark photons with high-energy colliders. J. High Energy Phys. 20125, 157 (2015).
ATLAS Collaboration Search for long-lived, weakly interacting particles that decay to displaced hadronic jets in proton-proton collisions at TeV with the ATLAS detector. Phys. Rev. D 92, 012010 (2015).
ATLAS Collaboration Search for long-lived neutral particles decaying into lepton jets in proton-proton collisions at TeV with the ATLAS detector. J. High Energy Phys. 11, 088 (2014).
CMS Collaboration Search for long-lived charged particles in proton-proton collisions at 13 TeV. Phys. Rev. D 94, 112004 (2016).
CMS Collaboration Search for long-lived neutral particles decaying to Quark-Antiquark pairs in proton-proton collisions at 8 TeV. Phys. Rev. D 91, 012007 (2015).
CMS Collaboration Search for dark matter and unparticles in events with a Z boson and missing transverse momentum in proton-proton collisions at 13 TeV. Preprint at http://arxiv.org/abs/1701.02042 (2017).
Agnese, R. et al. Projected Sensitivity of the SuperCDMS SNOLAB experiment. Preprint at http://arxiv.org/abs/1610.00006 (2016).
Akerib, D. S. et al. Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett. 118, 021303 (2017).
Acknowledgements
We thank A. Boveia, M. Danninger, A. De Roeck, T. J. Khoo, G. Landsberg, and C. Young for valuable comments on this manuscript. Work by C.D. is part of a project that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No 679305) and from the Swedish Research Council. The work of L.-T.W. was supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through grant NSF PHY-1125897 and an endowment from the Kavli Foundation and its founder F. Kavli.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Buchmueller, O., Doglioni, C. & Wang, LT. Search for dark matter at colliders. Nature Phys 13, 217–223 (2017). https://doi.org/10.1038/nphys4054
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys4054
This article is cited by
-
Nanosecond anomaly detection with decision trees and real-time application to exotic Higgs decays
Nature Communications (2024)
-
Binary collisions of dark matter blobs
Journal of High Energy Physics (2023)
-
Cosmic ray boosted sub-GeV gravitationally interacting dark matter in direct detection
Journal of High Energy Physics (2020)
-
Sneutrino Dark Matter in the BLSSM
Journal of High Energy Physics (2018)
-
Long-lived stau, sneutrino dark matter and right-slepton spectrum
Journal of High Energy Physics (2018)