Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Indirect dark matter searches in gamma and cosmic rays

Abstract

Dark matter candidates such as weakly interacting massive particles are predicted to annihilate or decay into Standard Model particles, leaving behind distinctive signatures in gamma rays, neutrinos, positrons, antiprotons, or even antinuclei. Indirect dark matter searches, and in particular those based on gamma-ray observations and cosmic-ray measurements, could detect such signatures. Here we review the strengths and limitations of this approach and look into the future of indirect dark matter searches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dark matter candidates indicating the interdependence of the interaction cross-section and particle mass97.
Figure 2: Targets for indirect dark matter searches in the gamma-ray sky.
Figure 3: The current most important constraints on the annihilation cross-section versus WIMP mass.
Figure 4: The present and future search capabilities on spin-independent WIMP-nucleon scattering (adapted from ref. 91).

Similar content being viewed by others

References

  1. Bergström, L. Dark matter evidence, particle physics candidates and detection methods. Ann. Phys. 524, 479–496 (2012).

    Article  Google Scholar 

  2. Scott, P. et al. Direct constraints on minimal supersymmetry from Fermi-LAT observations of the dwarf galaxy Segue 1. J. Cosmol. Astropart. Phys. 01, 031 (2010).

    Article  ADS  Google Scholar 

  3. Srednicki, M., Theisen, S. & Silk, J. Cosmic quarkonium: a probe of dark matter. Phys. Rev. Lett. 56, 263–265 (1986).

    Article  ADS  Google Scholar 

  4. Bergstrom, L. & Snellman, H. Observable monochromatic photons from cosmic photino annihilation. Phys. Rev. D 37, 3737–3741 (1988).

    Article  ADS  Google Scholar 

  5. Hisano, J., Matsumoto, S. & Nojiri, M. M. Explosive dark matter annihilation. Phys. Rev. Lett. 92, 031303 (2004).

    Article  ADS  Google Scholar 

  6. Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563–575 (1996).

    Article  ADS  Google Scholar 

  7. Einasto, J. Kinematics and dynamics of stellar systems. Trudy Inst. Astroz. Alma-Ata 5, 87 (1965).

    ADS  Google Scholar 

  8. Moore, B., Quinn, T., Governato, F., Stadel, J. & Lake, G. Cold collapse and the core catastrophe. Mon. Not. R. Astron. Soc. 310, 1147–1152 (1999).

    Article  ADS  Google Scholar 

  9. Burkert, A. The structure of dark matter halos in dwarf galaxies. Astrophys. J. 447, L25 (1995).

    Article  ADS  Google Scholar 

  10. Ando, S. & Komatsu, E. Anisotropy of the cosmic gamma-ray background from dark matter annihilation. Phys. Rev. D 73, 023521 (2006).

    Article  ADS  Google Scholar 

  11. Xia, J. Q. et al. A cross-correlation study of the Fermi-LAT γ-ray diffuse extragalactic signal. Mon. Not. R. Astron. Soc. 416, 2247–2264 (2011).

    Article  ADS  Google Scholar 

  12. Ando, S., Benoit-Levy, A. & Komatsu, E. Mapping dark matter in the gamma-ray sky with galaxy catalogs. Phys. Rev. D 90, 023514 (2014).

    Article  ADS  Google Scholar 

  13. Cuoco, A. et al. Dark matter searches in the gamma-ray extragalactic background via cross-correlations with galaxy catalogues. Astrophys. J. Suppl. 221, 29 (2015).

    Article  ADS  Google Scholar 

  14. Camera, S., Fornasa, M., Fornengo, N. & Regis, M. A novel approach in the weakly interacting massive particle quest: cross-correlation of gamma-ray anisotropies and cosmic shear. Astrophys. J. Lett. 771, L5 (2013).

    Article  ADS  Google Scholar 

  15. Shirasaki, M., Horiuchi, S. & Yoshida, N. Cross correlation of cosmic shear and extragalactic gamma-ray background: constraints on the dark matter annihilation cross section. Phys. Rev. D 90, 063502 (2014).

    Article  ADS  Google Scholar 

  16. Hooper, D., Sarkar, S. & Taylor, A. M. The intergalactic propagation of ultra-high energy cosmic ray nuclei. Astropart. Phys. 27, 199–212 (2007).

    Article  ADS  Google Scholar 

  17. Cuoco, A. et al. Angular signatures of annihilating dark matter in the cosmic gamma-ray background. Phys. Rev. D 77, 123518 (2008).

    Article  ADS  Google Scholar 

  18. Ackermann, M. et al. (Fermi-LAT) Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT. Phys. Rev. D 85, 083007 (2012).

    Article  ADS  Google Scholar 

  19. Ando, S. & Komatsu, E. Constraints on the annihilation cross section of dark matter particles from anisotropies in the diffuse gamma-ray background measured with Fermi-LAT. Phys. Rev. D 87, 123539 (2013).

    Article  ADS  Google Scholar 

  20. Fornasa, M. et al. Characterization of dark-matter-induced anisotropies in the diffuse gamma-ray background. Mon. Not. R. Astron. Soc. 429, 1529–1553 (2013).

    Article  ADS  Google Scholar 

  21. Aharonian, F. A., Atoyan, A. M. & Voelk, H. J. High energy electrons and positrons in cosmic rays as an indicator of the existence of a nearby cosmic tevatron. A & A 294, L41 (1995).

    ADS  Google Scholar 

  22. Nishimura, J., Kobayashi, T., Komori, Y. & Yoshida, K. Observations of high energy primary electrons and their astrophysical significance. Adv. Space Res. 19, 767–770 (1997).

    Article  ADS  Google Scholar 

  23. Kobayashi, T. et al. The most likely sources of high-energy cosmic-ray electrons in supernova remnants. Astrophys. J. 601, 340–351 (2004).

    Article  ADS  Google Scholar 

  24. Aharonian, F. A. & Atoyan, A. M. Cosmic ray positrons connected with galactic gamma radiation of high and very high energies. J. Phys. G 17, 1769–1778 (1991).

    Article  ADS  Google Scholar 

  25. Cirelli, M. Dark matter indirect searches: charged cosmic rays. J. Phys. Conf. Ser. 718, 022005 (2016).

    Article  Google Scholar 

  26. Profumo, S. An observable electron-positron anisotropy cannot be generated by dark matter. J. Cosmol. Astropart. Phys. 02, 43 (2015).

    Article  ADS  Google Scholar 

  27. Lopez, A. et al. Fermi/LAT observations of dwarf galaxies highly constrain a dark matter interpretation of excess positrons seen in AMS-02, HEAT, and PAMELA. J. Cosmol. Astropart. Phys. 03, 33 (2016).

    Article  ADS  Google Scholar 

  28. Amenomori, M. et al. (Tibet ASγ) Large-scale sidereal anisotropy of galactic cosmic-ray intensity observed by the Tibet Air Shower Array. Astrophys. J. 626, L29 (2005).

  29. Abdo, A. A. et al. (MILAGRO) Discovery of localized regions of excess 10-TeV cosmic rays. Phys. Rev. Lett. 101, 221101 (2008).

  30. Aartsen, M. G. et al. (IceCube) Observation of cosmic ray anisotropy with the Icetop Air Shower Array. Astrophys. J. 765, 55 (2013).

  31. Abeysekara, A. U. et al. (HAWC) Observation of small-scale anisotropy in the arrival direction distribution of TeV cosmic rays with HAWC. Astrophys. J. 796, 108 (2014).

  32. Ahlers, M. & Mertsch, P. Origin of small-scale anisotropies in galactic cosmic rays. Preprint at http://arxiv.org/abs/1612.01873 (2016).

  33. Atwood, W. B. et al. (Fermi-LAT) The Large Area Telescope on the Fermi Gamma-ray Space Telescope mission. Astrophys. J. 697, 1071–1102 (2009).

  34. Acero, F. et al. (Fermi-LAT) Fermi Large Area Telescope Third Source Catalog. Astrophys. J. Suppl. 218, 23 (2015).

  35. James, F. Interpretation of the shape of the likelihood function around its minimum. Comput. Phys. Commun. 20, 29–35 (1980).

    Article  ADS  Google Scholar 

  36. Rolke, W. A., Lopez, A. M. & Conrad, J. Limits and confidence intervals in the presence of nuisance parameters. J. Nucl. Instrum. Meth. A551, 493–503 (2005).

    Article  ADS  Google Scholar 

  37. Cowan, G., Cranmer, K., Gross, E. & Vitells, O. Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C71, 1554 (2011).

    Article  ADS  Google Scholar 

  38. Ackermann, M. et al. (Fermi-LAT) Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope. Phys. Rev. Lett. 107, 241302 (2011).

  39. Abdallah, H. et al. (HESS Coll.) Search for dark matter annihilations towards the inner galactic halo from 10 years of observations with H.E.S.S. Phys. Rev. Lett. 117, 111301 (2016).

  40. Conrad, J. Statistical issues in astrophysical searches for particle dark matter. Astropart. Phys. 62, 165–177 (2015).

    Article  ADS  Google Scholar 

  41. Abdo, A. A. et al. (Fermi-LAT) Spectrum of the isotropic diffuse gamma-ray emission derived from first-year Fermi Large Area Telescope data. Phys. Rev. Lett. 104, 010101 (2010).

  42. Ackermann, M. et al. (Fermi-LAT) Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT. Phys. Rev. D 85, 083007 (2012).

  43. Ackermann, M. et al. (Fermi-LAT) Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope. Phys. Rev. D 91, 122002 (2015).

  44. Abramowski, A. et al. (HESS Coll.) Search for photon-linelike signatures from dark matter annihilations with H.E.S.S. Phys. Rev. Lett. 110, 041301 (2013).

  45. Abramowski, A. et al. (HESS Coll.) Constraints on an annihilation signal from a core of constant dark matter density around the Milky Way Center with H.E.S.S. Phys. Rev. Lett. 114, 081301 (2015).

  46. Goodenough, L. & Hooper, D. Possible evidence for dark matter annihilation in the inner Milky Way from the Fermi Gamma Ray Space Telescope. Preprint at http://arxiv.org/abs/0910.2998 (2009).

  47. Hooper, D. & Goodenough, L. Dark matter annihilation in the galactic center as seen by the Fermi Gamma Ray Space Telescope. Phys. Lett. B 697, 412–428 (2011).

    Article  ADS  Google Scholar 

  48. Hooper, D. & Slatyer, T. R. Two emission mechanisms in the Fermi bubbles: a possible signal of annihilating dark matter. Phys. Dark Univ. 2, 118–138 (2013).

    Article  Google Scholar 

  49. Daylan, T. et al. The characterization of the gamma-ray signal from the central Milky Way: a case for annihilating dark matter. Phys. Dark Univ. 12, 1–23 (2016).

    Article  Google Scholar 

  50. Abazajian, K. N. & Kaplinghat, M. Detection of a gamma-ray source in the Galactic Center consistent with extended emission from dark matter annihilation and concentrated astrophysical emission. Phys. Rev. D 86, 083511 (2012).

    Article  ADS  Google Scholar 

  51. Calore, F. et al. A tale of tails: dark matter interpretations of the Fermi GeV excess in light of background model systematics. Phys. Rev. D 91, 063003 (2015).

    Article  ADS  Google Scholar 

  52. Gordon, C. & Macías, O. Dark matter and pulsar model constraints from Galactic Center Fermi-LAT gamma-ray observations. Phys. Rev. D 88, 083521 (2013).

    Article  ADS  Google Scholar 

  53. Calore, F. et al. The Fermi GeV excess: challenges for the dark matter interpretation. J. Phys. Conf. Ser. 718, 042010 (2016).

    Article  Google Scholar 

  54. Ajello, M. (Fermi-LAT) Fermi-LAT observations of high-energy gamma-ray emission toward the galactic center. Astrophys. J. 819, 44 (2016).

  55. Yang, R. & Aharonian, F. On the GeV excess in the diffuse γ-ray emission towards the Galactic Center. A & A 589, A117 (2016).

    Article  ADS  Google Scholar 

  56. Macias, O. et al. Discovery of gamma-ray emission from the x-shaped bulge of the Milky Way. Preprint at http://arXiv.org/abs/1611.06644 (2016).

  57. Cholis, I., Hooper, D. & Linden, T. Challenges in explaining the Galactic Center gamma-ray excess with millisecond pulsars. J. Cosmol. Astropart. Phys. 06, 043 (2015).

    Article  ADS  Google Scholar 

  58. Stecker, F. W. The cosmic γ-ray spectrum from secondary particle production in cosmic-ray interactions. Astrophys. Space Sci. 6, 377–389 (1970).

    Article  ADS  Google Scholar 

  59. Bertsch, D. L. et al. Diffuse gamma-ray emission in the galactic plane from cosmic-ray, matter, and photon interactions. Astrophys. J. 416, 587–600 (1993).

    Article  ADS  Google Scholar 

  60. Strong, A. W., Moskalenko, I. V. & Reimer, O. Diffuse continuum gamma rays from the Galaxy. Astrophys. J. 537, 763–784 (2000).

    Article  ADS  Google Scholar 

  61. Ackermann, M. et al. (Fermi-LAT) Constraints on the galactic halo dark matter from Fermi-LAT diffuse measurements. Astrophys. J. 761, 91 (2012).

  62. Ullio, P. & Valli, M. A critical reassessment of particle dark matter limits from dwarf satellites. J. Cosmol. Astropart. Phys. 07, 025 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  63. Ackermann, M. et al. (Fermi-LAT) Search for gamma-ray emission from the Coma Cluster with six years of Fermi-LAT data. Astrophys. J. 819, 149 (2016).

  64. Ackermann, M. et al. (Fermi-LAT) Search for extended gamma-ray emission from the Virgo galaxy cluster with Fermi-LAT. Astrophys. J. 812, 159 (2016).

  65. Ahnen, M. L. et al. (MAGIC Coll.) Deep observation of the NGC 1275 region with MAGIC: search of diffuse γ-ray emission from cosmic rays in the Perseus cluster. A & A 589, A33 (2016).

  66. Ackermann, M. et al. (Fermi-LAT) Search for cosmic-ray induced gamma-ray emission in galaxy clusters. Astrophys. J. 787, 18 (2014).

  67. Ackermann, M. et al. (Fermi-LAT Coll) The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV. Astrophys. J. 799, 86 (2015).

  68. Sreekumar, P. et al. EGRET observations of the extragalactic gamma ray emission. Astrophys. J. 494, 523–534 (1998).

    Article  ADS  Google Scholar 

  69. Keshet, U., Waxman, E. & Loeb, A. The case for a low extragalactic gamma-ray background. J. Cosmol. Astropart. Phys. 4, 006 (2004).

    Article  ADS  Google Scholar 

  70. Strong, A. W., Moskalenko, I. V. & Reimer, O. A new determination of the extragalactic diffuse gamma-ray background from EGRET data. Astrophys. J. 613, 956–961 (2004).

    Article  ADS  Google Scholar 

  71. Abdo, A. A. et al. (Fermi-LAT) Spectrum of the isotropic diffuse gamma-ray emission derived from first-year Fermi Large Area Telescope data. Phys. Rev. Lett. 104, 101101 (2010).

  72. Siegal-Gaskins, J. M. et al. Anisotropies in the gamma-ray sky from millisecond pulsars. Mon. Not. R. Astron. Soc. 415, 1074–1082 (2011).

    Article  ADS  Google Scholar 

  73. Ajello, M. et al. (Fermi-LAT) The origin of the extragalactic gamma-ray background and implications for dark matter annihilation. APJ 800, L27 (2015).

  74. Di Mauro, M. & Donato, F. Composition of the Fermi-LAT isotropic gamma-ray background intensity: emission from extragalactic point sources and dark matter annihilations. Phys. Rev. D 91, 123001 (2015).

    Article  ADS  Google Scholar 

  75. Ullio, P. et al. Cosmological dark matter annihilations into γ rays: a closer look. Phys. Rev. D 66, 123502 (2002).

    Article  ADS  Google Scholar 

  76. Fornasa, M. & Sanchez-Conde, M. The nature of the diffuse gamma-ray background. Phys. Rep. 598, 1–58 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  77. Adriani, O. et al. (PAMELA Coll.) An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458, 607–609 (2009).

  78. Aguilar, M. (AMS Coll.) Electron and positron fluxes in primary cosmic rays measured with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 113, 121102 (2014).

  79. Aguilar, M. et al. (AMS Coll.) Antiproton flux, antiproton-to-proton flux ratio, and properties of elementary particle fluxes in primary cosmic rays measured with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 117, 091103 (2016).

  80. Ackermann, M. et al. (Fermi-LAT Coll.) Searching for dark matter annihilation from Milky Way dwarf spheroidal galaxies with six years of Fermi Large Area Telescope data. Phys. Rev. Lett. 115, 231301 (2015).

  81. Giesen, G. et al. AMS-02 antiprotons, at last! Secondary astrophysical component and immediate implications for dark matter. J. Cosmol. Astropart. Phys. 09, 023 (2015).

    Article  ADS  Google Scholar 

  82. Jin, H. B., Wu, Y. L. & Zhou, Y. F. Upper limits on dark matter annihilation cross sections from the first AMS-02 antiproton data. Phys. Rev. D 92, 055027 (2015).

    Article  ADS  Google Scholar 

  83. Kaplan, D. E., Luty, M. A. & Zurek, K. M. Asymmetric dark matter. Phys. Rev. D 79, 115016 (2009).

    ADS  Google Scholar 

  84. Bechtol, K. et al. (DES Collaboration) Eight new Milky Way companions discovered in first-year Dark Energy Survey data. Astrophys. J. 807, 50 (2015).

  85. Drlica-Wagner, A. et al. (DES Collaboration) Eight ultra-faint galaxy candidates discovered in year two of the Dark Energy Survey. Astrophys. J. 813, 109 (2015).

  86. Laevens, B. P. M. et al. Sagittarius II, Draco II and Laevens 3: three new Milky Way satellites discovered in the Pan-STARRS 1 3pi Survey. Astrophys. J. 813, 44 (2015).

    Article  ADS  Google Scholar 

  87. Drlica-Wagner, A. et al. (DES Collaboration) Search for gamma-ray emission from DES dwarf spheroidal galaxy candidates with Fermi-LAT data. Astrophys. J. 809, L4 (2015).

  88. Albert, A. et al. (Fermi-LAT, DES Collaborations) Searching for dark matter annihilation in recently discovered Milky Way satellites with Fermi-LAT. Astrophys. J. 834, 110 (2017).

  89. Dalal, N. & Kochanek, C. S. Direct detection of CDM substructure. Astrophys. J. 572, 25–33 (2002).

    Article  ADS  Google Scholar 

  90. Perryman, M.A. C. et al. GAIA: composition, formation and evolution of the Galaxy. A & A 369, 339–363 (2001).

    Article  ADS  Google Scholar 

  91. Chahill-Rawley, M. et al. Complementarity of dark matter searches in the phenomenological MSSM. Phys. Rev. D 91, 055011 (2015).

    Article  ADS  Google Scholar 

  92. Peccei, R. D. & Quinn, H. R. CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 38, 1440–1443 (1997).

    Article  ADS  Google Scholar 

  93. Weinberg, S. A new light boson? Phys. Rev. Lett. 40, 223–226 (1978).

    Article  ADS  Google Scholar 

  94. Wilczek, F. Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 40, 279–282 (1978).

    Article  ADS  Google Scholar 

  95. Ajello, M. et al. (Fermi-LAT) Search for spectral irregularities due to photon–axionlike-particle oscillations with the Fermi Large Area Telescope. Phys. Rev. Lett. 116, 161101 (2016).

  96. Meyer, M. et al. Fermi Large Area Telescope as a galactic supernovae axionscope. Phys. Rev. Lett. 118, 011103 (2017).

    Article  ADS  Google Scholar 

  97. Park, E.-K. DMSAG Report on the Direct Detection and Study of Dark Matter (2007); https://science.energy.gov/∼/media/hep/pdf/files/pdfs/dmsagreportjuly18_2007.pdf

    Google Scholar 

  98. Pieri, L. et al. Implications of high-resolution simulations on indirect dark matter searches. Phys. Rev. D 83, 023518 (2011).

    Article  ADS  Google Scholar 

  99. Ade, P. A. R. et al. (Planck Coll.) Planck 2015 results XIII. Cosmological parameters. A & A 594, A13 (2016).

  100. Adrian-Martinez, S. et al. (ANTARES Coll.) Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope. Phys. Lett. B 759, 69–74 (2016).

  101. Aartsen, M. G. et al. (IceCube Coll.) All-flavour search for neutrinos from dark matter annihilations in the Milky Way with IceCube/DeepCore. Eur. Phys. J. C 76, 531 (2016).

  102. Gordon, C. & Macias, O. Dark matter and pulsar model constraints from Galactic Center Fermi-LAT gamma-ray observations. Phys. Rev. D 88, 083521 (2013).

    Article  ADS  Google Scholar 

  103. Daylan, T. et al. The characterization of the gamma-ray signal from the central Milky Way: a case for annihilating dark matter. Phys. Dark Univ. 12, 1–23 (2016).

    Article  Google Scholar 

  104. Calore, F., Cholis, I. & Weniger, C. Background model systematics for the Fermi GeV excess. J. Cosmol. Astropart. Phys. 1503, 038 (2015).

    Article  ADS  Google Scholar 

  105. Aprile, E. et al. (XENON Collaboration) Physics reach of the XENON1T Dark Matter Experiment. J. Cosmol. Astropart. Phys. 04, 027 (2016).

  106. Akerib, D. S. et al. (LZ Collaboration) LUX-ZEPLIN (LZ) Conceptual Design Report. Preprint at http://arXiv.org/abs/1509.02910 (2015).

Download references

Acknowledgements

J.C. is a Wallenberg Academy Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Reimer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conrad, J., Reimer, O. Indirect dark matter searches in gamma and cosmic rays. Nature Phys 13, 224–231 (2017). https://doi.org/10.1038/nphys4049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4049

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing