Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Periodically driving a many-body localized quantum system


Periodically driven quantum many-body systems can display rich dynamics and host exotic phases that are absent in their undriven counterparts. However, in the presence of interactions such systems are expected to eventually heat up to a simple infinite-temperature state. One possible exception is a periodically driven many-body localized system, in which heating is precluded by strong disorder. Here, we use a gas of ultracold fermionic potassium atoms in optical lattices to prepare and probe such a driven system and show that it is indeed stable for high enough driving frequency. Moreover, we find a novel regime in which the system is exceedingly stable even at low drive frequencies, a particular feature of our driving scheme. Our experimental findings are well supported by numerical simulations and may provide avenues for engineering novel phases in periodically driven matter.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of the experiment and the dynamical phase diagram.
Figure 2: Evolution of the imbalance under periodic modulation.
Figure 3: Dynamical phase diagram.
Figure 4: Frequency and amplitude dependence of the asymptotic imbalance.


  1. 1

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–880 (2008).

    ADS  Article  Google Scholar 

  2. 2

    Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, M. Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011).

    ADS  Google Scholar 

  3. 3

    Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406 (2009).

    ADS  Article  Google Scholar 

  4. 4

    Kitagawa, T., Berg, E., Rudner, M. & Demler, E. Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010).

    ADS  Article  Google Scholar 

  5. 5

    Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).

    Article  Google Scholar 

  6. 6

    Aidelsburger, M., Atala, M. & Lohse, M. et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013).

    ADS  Article  Google Scholar 

  7. 7

    Miyake, H., Siviloglou, G. A., Kennedy, C. J., Burton, W. C. & Ketterle, W. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013).

    ADS  Article  Google Scholar 

  8. 8

    Jotzu, G., Messer, M. & Desbuquois, R. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    ADS  Article  Google Scholar 

  9. 9

    Aidelsburger, M., Lohse, M. & Schweizer, C. et al. Measuring the chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11, 162–166 (2015).

    Article  Google Scholar 

  10. 10

    Ponte, P., Chandran, A., Papić, Z. & Abanin, D. A. Periodically driven ergodic and many-body localized quantum systems. Ann. Phys. 353, 196–204 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  11. 11

    Ponte, P., Papić, Z., Huveneers, F. & Abanin, D. A. Many-body localization in periodically driven systems. Phys. Rev. Lett. 114, 140401 (2015).

    ADS  Article  Google Scholar 

  12. 12

    Lazarides, A., Das, A. & Moessner, R. Fate of many-body localization under periodic driving. Phys. Rev. Lett. 115, 030402 (2015).

    ADS  Article  Google Scholar 

  13. 13

    Abanin, D. A., De Roeck, W. & Huveneers, F. Theory of many-body localization in periodically driven systems. Ann. Phys. 372, 1–11 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  14. 14

    Kozarzewski, M., Prelovšek, P. & Mierzejewski, M. Distinctive response of many-body localized systems to a strong electric field. Phys. Rev. B 93, 235151 (2016).

    ADS  Article  Google Scholar 

  15. 15

    Rehn, J., Lazarides, A., Pollmann, F. & Moessner, R. How periodic driving heats a disordered quantum spin chain. Phys. Rev. B 94, 020201 (2016).

    ADS  Article  Google Scholar 

  16. 16

    Gopalakrishnan, S., Knap, M. & Demler, E. Regimes of heating and dynamical response in driven many-body localized systems. Phys. Rev. B 94, 094201 (2016).

    ADS  Article  Google Scholar 

  17. 17

    Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    ADS  Article  Google Scholar 

  18. 18

    Basko, D., Aleiner, I. & Altshuler, B. Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006).

    ADS  Article  Google Scholar 

  19. 19

    Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).

    ADS  Article  Google Scholar 

  20. 20

    Altman, E. & Vosk, R. Universal dynamics and renormalization in many-body-localized systems. Annu. Rev. Condens. Matter Phys. 6, 383–409 (2015).

    ADS  Article  Google Scholar 

  21. 21

    Kondov, S. S., McGehee, W. R., Xu, W. & DeMarco, B. Disorder-induced localization in a strongly correlated atomic Hubbard gas. Phys. Rev. Lett. 114, 083002 (2015).

    ADS  Article  Google Scholar 

  22. 22

    Schreiber, M., Hodgman, S. S. & Bordia, P. et al. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842–845 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  23. 23

    Smith, J., Lee, A. & Richerme, P. et al. Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys. 12, 907–911 (2016).

    Article  Google Scholar 

  24. 24

    Bordia, P., Lüschen, H. P. & Hodgman, S. S. et al. Coupling identical one-dimensional many-body localized systems. Phys. Rev. Lett. 116, 140401 (2016).

    ADS  Article  Google Scholar 

  25. 25

    Choi, J.-y., Hild, S. & Zeiher, J. et al. Exploring the many-body localization transition in two dimensions. Science 352, 1547–1552 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  26. 26

    Khemani, V., Lazarides, A., Moessner, R. & Sondhi, S. L. Phase structure of driven quantum systems. Phys. Rev. Lett. 116, 250401 (2016).

    ADS  Article  Google Scholar 

  27. 27

    Else, D. V. & Nayak, C. Classification of topological phases in periodically driven interacting systems. Phys. Rev. B 93, 201103 (2016).

    ADS  Article  Google Scholar 

  28. 28

    von Keyserlingk, C. W. & Sondhi, S. L. Phase structure of one-dimensional interacting Floquet systems. I. Abelian symmetry-protected topological phases. Phys. Rev. B 93, 245145 (2016).

    ADS  Article  Google Scholar 

  29. 29

    von Keyserlingk, C. W. & Sondhi, S. L. Phase structure of one-dimensional interacting Floquet systems. II. Symmetry-broken phases. Phys. Rev. B 93, 245146 (2016).

    ADS  Article  Google Scholar 

  30. 30

    Potter, A. C., Morimoto, T. & Vishwanath, A. Classification of interacting topological Floquet phases in one dimension. Phys. Rev. X 6, 041001 (2016).

    Google Scholar 

  31. 31

    Else, D. V., Bauer, B. & Nayak, C. Floquet time crystals. Phys. Rev. Lett. 117, 090402 (2016).

    ADS  Article  Google Scholar 

  32. 32

    von Keyserlingk, C. W., Khemani, V. & Sondhi, S. L. Absolute stability and spatiotemporal long-range order in Floquet systems. Phys. Rev. B 94, 085112 (2016).

    ADS  Article  Google Scholar 

  33. 33

    Iyer, S., Oganesyan, V., Refael, G. & Huse, D. A. Many-body localization in a quasiperiodic system. Phys. Rev. B 87, 134202 (2013).

    ADS  Article  Google Scholar 

  34. 34

    Lüschen, H. P., Bordia, P. & Hodgman, S. S. et al. Signatures of many-body localization in a controlled open quantum system. Preprint at (2016).

  35. 35

    D’Alessio, L. & Rigol, M. Long-time behavior of isolated periodically driven interacting lattice systems. Phys. Rev. X 4, 041048 (2014).

    Google Scholar 

  36. 36

    Agarwal, K., Gopalakrishnan, S., Knap, M., Müller, M. & Demler, E. Anomalous diffusion and Griffiths effects near the many-body localization transition. Phys. Rev. Lett. 114, 160401 (2015).

    ADS  Article  Google Scholar 

  37. 37

    Vosk, R., Huse, D. A. & Altman, E. Theory of the many-body localization transition in one-dimensional systems. Phys. Rev. X 5, 031032 (2015).

    Google Scholar 

  38. 38

    Potter, A. C., Vasseur, R. & Parameswaran, S. A. Universal properties of many-body delocalization transitions. Phys. Rev. X 5, 031033 (2015).

    Google Scholar 

  39. 39

    Gopalakrishnan, S., Müller, M. & Khemani, V. et al. Low-frequency conductivity in many-body localized systems. Phys. Rev. B 92, 104202 (2015).

    ADS  Article  Google Scholar 

Download references


We thank E. Altman, E. Demler, S. Gopalakrishnan and S. Hodgman for many useful discussions. We acknowledge support from Technical University of Munich - Institute for Advanced Study, funded by the German Excellence Initiative and the European Union FP7 under grant agreement 291763, from the DFG grant no. KN 1254/1-1, the European Commission (UQUAM, AQuS) and the Nanosystems Initiative Munich (NIM).

Author information




P.B. and H.L. conceived and performed the experiments. M.K. carried out the numerical simulations. U.S., M.K. and I.B. supervised the work. All authors contributed critically to the writing of the manuscript.

Corresponding author

Correspondence to Immanuel Bloch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 581 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bordia, P., Lüschen, H., Schneider, U. et al. Periodically driving a many-body localized quantum system. Nature Phys 13, 460–464 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing