Abstract
Periodically driven quantum many-body systems can display rich dynamics and host exotic phases that are absent in their undriven counterparts. However, in the presence of interactions such systems are expected to eventually heat up to a simple infinite-temperature state. One possible exception is a periodically driven many-body localized system, in which heating is precluded by strong disorder. Here, we use a gas of ultracold fermionic potassium atoms in optical lattices to prepare and probe such a driven system and show that it is indeed stable for high enough driving frequency. Moreover, we find a novel regime in which the system is exceedingly stable even at low drive frequencies, a particular feature of our driving scheme. Our experimental findings are well supported by numerical simulations and may provide avenues for engineering novel phases in periodically driven matter.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Observation of critical phase transition in a generalized Aubry-André-Harper model with superconducting circuits
npj Quantum Information Open Access 25 April 2023
-
Time-crystalline eigenstate order on a quantum processor
Nature Open Access 30 November 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–880 (2008).
Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, M. Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011).
Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406 (2009).
Kitagawa, T., Berg, E., Rudner, M. & Demler, E. Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010).
Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).
Aidelsburger, M., Atala, M. & Lohse, M. et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013).
Miyake, H., Siviloglou, G. A., Kennedy, C. J., Burton, W. C. & Ketterle, W. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013).
Jotzu, G., Messer, M. & Desbuquois, R. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).
Aidelsburger, M., Lohse, M. & Schweizer, C. et al. Measuring the chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11, 162–166 (2015).
Ponte, P., Chandran, A., Papić, Z. & Abanin, D. A. Periodically driven ergodic and many-body localized quantum systems. Ann. Phys. 353, 196–204 (2015).
Ponte, P., Papić, Z., Huveneers, F. & Abanin, D. A. Many-body localization in periodically driven systems. Phys. Rev. Lett. 114, 140401 (2015).
Lazarides, A., Das, A. & Moessner, R. Fate of many-body localization under periodic driving. Phys. Rev. Lett. 115, 030402 (2015).
Abanin, D. A., De Roeck, W. & Huveneers, F. Theory of many-body localization in periodically driven systems. Ann. Phys. 372, 1–11 (2016).
Kozarzewski, M., Prelovšek, P. & Mierzejewski, M. Distinctive response of many-body localized systems to a strong electric field. Phys. Rev. B 93, 235151 (2016).
Rehn, J., Lazarides, A., Pollmann, F. & Moessner, R. How periodic driving heats a disordered quantum spin chain. Phys. Rev. B 94, 020201 (2016).
Gopalakrishnan, S., Knap, M. & Demler, E. Regimes of heating and dynamical response in driven many-body localized systems. Phys. Rev. B 94, 094201 (2016).
Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).
Basko, D., Aleiner, I. & Altshuler, B. Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006).
Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).
Altman, E. & Vosk, R. Universal dynamics and renormalization in many-body-localized systems. Annu. Rev. Condens. Matter Phys. 6, 383–409 (2015).
Kondov, S. S., McGehee, W. R., Xu, W. & DeMarco, B. Disorder-induced localization in a strongly correlated atomic Hubbard gas. Phys. Rev. Lett. 114, 083002 (2015).
Schreiber, M., Hodgman, S. S. & Bordia, P. et al. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842–845 (2015).
Smith, J., Lee, A. & Richerme, P. et al. Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys. 12, 907–911 (2016).
Bordia, P., Lüschen, H. P. & Hodgman, S. S. et al. Coupling identical one-dimensional many-body localized systems. Phys. Rev. Lett. 116, 140401 (2016).
Choi, J.-y., Hild, S. & Zeiher, J. et al. Exploring the many-body localization transition in two dimensions. Science 352, 1547–1552 (2016).
Khemani, V., Lazarides, A., Moessner, R. & Sondhi, S. L. Phase structure of driven quantum systems. Phys. Rev. Lett. 116, 250401 (2016).
Else, D. V. & Nayak, C. Classification of topological phases in periodically driven interacting systems. Phys. Rev. B 93, 201103 (2016).
von Keyserlingk, C. W. & Sondhi, S. L. Phase structure of one-dimensional interacting Floquet systems. I. Abelian symmetry-protected topological phases. Phys. Rev. B 93, 245145 (2016).
von Keyserlingk, C. W. & Sondhi, S. L. Phase structure of one-dimensional interacting Floquet systems. II. Symmetry-broken phases. Phys. Rev. B 93, 245146 (2016).
Potter, A. C., Morimoto, T. & Vishwanath, A. Classification of interacting topological Floquet phases in one dimension. Phys. Rev. X 6, 041001 (2016).
Else, D. V., Bauer, B. & Nayak, C. Floquet time crystals. Phys. Rev. Lett. 117, 090402 (2016).
von Keyserlingk, C. W., Khemani, V. & Sondhi, S. L. Absolute stability and spatiotemporal long-range order in Floquet systems. Phys. Rev. B 94, 085112 (2016).
Iyer, S., Oganesyan, V., Refael, G. & Huse, D. A. Many-body localization in a quasiperiodic system. Phys. Rev. B 87, 134202 (2013).
Lüschen, H. P., Bordia, P. & Hodgman, S. S. et al. Signatures of many-body localization in a controlled open quantum system. Preprint at http://arXiv.org/abs/1610.01613 (2016).
D’Alessio, L. & Rigol, M. Long-time behavior of isolated periodically driven interacting lattice systems. Phys. Rev. X 4, 041048 (2014).
Agarwal, K., Gopalakrishnan, S., Knap, M., Müller, M. & Demler, E. Anomalous diffusion and Griffiths effects near the many-body localization transition. Phys. Rev. Lett. 114, 160401 (2015).
Vosk, R., Huse, D. A. & Altman, E. Theory of the many-body localization transition in one-dimensional systems. Phys. Rev. X 5, 031032 (2015).
Potter, A. C., Vasseur, R. & Parameswaran, S. A. Universal properties of many-body delocalization transitions. Phys. Rev. X 5, 031033 (2015).
Gopalakrishnan, S., Müller, M. & Khemani, V. et al. Low-frequency conductivity in many-body localized systems. Phys. Rev. B 92, 104202 (2015).
Acknowledgements
We thank E. Altman, E. Demler, S. Gopalakrishnan and S. Hodgman for many useful discussions. We acknowledge support from Technical University of Munich - Institute for Advanced Study, funded by the German Excellence Initiative and the European Union FP7 under grant agreement 291763, from the DFG grant no. KN 1254/1-1, the European Commission (UQUAM, AQuS) and the Nanosystems Initiative Munich (NIM).
Author information
Authors and Affiliations
Contributions
P.B. and H.L. conceived and performed the experiments. M.K. carried out the numerical simulations. U.S., M.K. and I.B. supervised the work. All authors contributed critically to the writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 581 kb)
Rights and permissions
About this article
Cite this article
Bordia, P., Lüschen, H., Schneider, U. et al. Periodically driving a many-body localized quantum system. Nature Phys 13, 460–464 (2017). https://doi.org/10.1038/nphys4020
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys4020
This article is cited by
-
Observation of critical phase transition in a generalized Aubry-André-Harper model with superconducting circuits
npj Quantum Information (2023)
-
Time-crystalline eigenstate order on a quantum processor
Nature (2022)
-
Floquet prethermalization in dipolar spin chains
Nature Physics (2021)
-
Driving toward hot new phases
Nature Physics (2020)
-
Band structure engineering and non-equilibrium dynamics in Floquet topological insulators
Nature Reviews Physics (2020)