Abstract
Compared to atoms, molecules possess additional degrees of freedom that can be exploited in fundamental tests, ultracold chemistry, and engineering new quantum phases in many-body systems. Here, we review the recent progress in creating and manipulating ultracold bialkali molecules to study quantum gases of polar molecules.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Density-wave ordering in a unitary Fermi gas with photon-mediated interactions
Nature Open Access 24 May 2023
-
Effects of conical intersections on hyperfine quenching of hydroxyl OH in collision with an ultracold Sr atom
Scientific Reports Open Access 24 August 2020
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulation with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).
Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).
Regal, C. A., Greiner, M. & Jin, D. S. Observation of resonance condensation of fermionic atom pairs. Phys. Rev. Lett. 92, 040403 (2004).
Zwierlein, M. W. et al. Condensation of pairs of fermionic atoms near a Feshbach resonance. Phys. Rev. Lett. 92, 120403 (2004).
Bartenstein, M. et al. Crossover from a molecular Bose–Einstein condensate to a degenerate fermi gas. Phys. Rev. Lett. 92, 120401 (2004).
Greiner, M., Mandel, O., Esslinger, T., Hansch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).
Lu, M., Youn, S. H. & Lev, B. L. Trapping ultracold dysprosium: a highly magnetic gas for dipolar physics. Phys. Rev. Lett. 104, 063001 (2010).
Aikawa, K. Bose–Einstein condensation of erbium. Phys. Rev. Lett. 108, 210401 (2012).
Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).
Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).
Löw, R. et al. An experimental and theoretical guide to strongly interacting Rydberg gases. J. Phys. B 45, 113001 (2012).
Douglas, J. S. et al. Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photon. 9, 326–331 (2015).
Baranov, M. A., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012–5061 (2012).
Yao, N. Y. et al. Many-body localization in dipolar systems. Phys. Rev. Lett. 113, 243002 (2014).
Baranov, M. A., Mar’enko, M. S., Rychkov, V. S. & Shlyapnikov, G. V. Superfluid pairing in a polarized dipolar Fermi gas. Phys. Rev. A 66, 013606 (2002).
Cooper, N. R. & Shlyapnikov, G. V. Stable topological superfluid phase of ultracold polar fermionic molecules. Phys. Rev. Lett. 103, 155302 (2009).
Pikovski, A., Klawunn, M., Shlyapnikov, G. V. & Santos, L. Interlayer superfluidity in bilayer systems of fermionic polar molecules. Phys. Rev. Lett. 105, 215302 (2010).
Kuns, K. A., Rey, A. M. & Gorshkov, A. V. d-wave superfluidity in optical lattices of ultracold polar molecules. Phys. Rev. A 84, 063639 (2011).
Knap, M., Berg, E., Ganahl, M. & Demler, E. Clustered Wigner-crystal phases of cold polar molecules in arrays of one-dimensional tubes. Phys. Rev. B 86, 064501 (2012).
Yao, N. Y. et al. Realizing fractional chern insulators in dipolar spin systems. Phys. Rev. Lett. 110, 185302 (2013).
Syzranov, S. V., Wall, M. L., Gurarie, V. & Rey, A. M. Spin–orbital dynamics in a system of polar molecules. Nat. Commun. 5, 5391 (2014).
Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).
Hazzard, K. R. A., Manmana, S. R., Foss-Feig, M. & Rey, A. M. Far-from-equilibrium quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 110, 075301 (2013).
Phillips, W. D. Nobel lecture: laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1998).
Cornell, E. A. & Wieman, C. E. Nobel lecture: Bose–Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002).
Ketterle, W. Nobel lecture: When atoms behave as waves: Bose–Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002).
Stuhl, B. K., Sawyer, B. C., Wang, D. & Ye, J. Magneto-optical trap for polar molecules. Phys. Rev. Lett. 101, 243002 (2008).
Hummon, M. T. et al. 2D magneto-optical trapping of diatomic molecules. Phys. Rev. Lett. 110, 143001 (2013).
Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & Demille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).
Norrgard, E. B., McCarron, D. J., Steinecker, M. H., Tarbutt, M. R. & DeMille, D. Submillikelvin dipolar molecules in a radio-frequency magneto-optical trap. Phys. Rev. Lett. 116, 063004 (2016).
Jones, K. M., Tiesinga, E., Lett, P. D. & Julienne, P. S. Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering. Rev. Mod. Phys. 78, 483–535 (2006).
Hutzler, N. R., Lu, H.-I. & Doyle, J. M. The buffer gas beam: an intense, cold, and slow source for atoms and molecules. Chem. Rev. 112, 4803–4827 (2012).
van de Meerakker, S. Y. T., Bethlem, H. L. & Meijer, G. Taming molecular beams. Nat. Phys. 4, 595–602 (2008).
Stuhl, B. K. et al. Evaporative cooling of the dipolar hydroxyl radical. Nature 492, 396–400 (2012).
Prehn, A., Ibrügger, M., Glöckner, R., Rempe, G. & Zeppenfeld, M. Optoelectrical cooling of polar molecules to submillikelvin temperatures. Phys. Rev. Lett. 116, 063005 (2016).
Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).
Danzl, J. G. et al. An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nat. Phys. 6, 265–270 (2010).
Takekoshi, T. et al. Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state. Phys. Rev. Lett. 113, 205301 (2014).
Molony, P. K. et al. Creation of ultracold 87Rb133Cs molecules in the rovibrational ground state. Phys. Rev. Lett. 113, 255301 (2014).
Park, J. W., Will, S. A. & Zwierlein, M. W. Ultracold dipolar gas of fermionic 23Na40K molecules in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015).
Guo, M. et al. Creation of an ultracold gas of ground-state dipolar 23Na87Rb molecules. Phys. Rev. Lett. 116, 205303 (2016).
Moses, S. A. et al. Creation of a low-entropy quantum gas of polar molecules in an optical lattice. Science 350, 659–662 (2015).
Donley, E. A., Claussen, N. R., Thompson, S. T. & Wieman, C. E. Atom-molecule coherence in a Bose–Einstein condensate. Nature 417, 529–533 (2002).
Jochim, S. et al. Bose–Einstein condensation of molecules. Science 302, 2101–2103 (2003).
Herbig, J. et al. Preparation of a pure molecular quantum gas. Science 301, 1510–1513 (2003).
Köhler, T., Góral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311–1361 (2006).
Bergmann, K., Theuer, H. & Shore, B. W. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998).
Lang, F., Winkler, K., Strauss, C., Grimm, R. & Denschlag, J. H. Ultracold triplet molecules in the rovibrational ground state. Phys. Rev. Lett. 101, 133005 (2008).
Zelevinsky, T., Kotochigova, S. & Ye, J. Precision test of mass ratio variations with lattice-confined ultracold molecules. Phys. Rev. Lett. 100, 043201 (2008).
Reinaudi, G., Osborn, C. B., McDonald, M., Kotochigova, S. & Zelevinsky, T. Optical production of stable ultracold 88Sr2 molecules. Phys. Rev. Lett. 109, 115303 (2012).
Stellmer, S., Pasquiou, B., Grimm, R. & Schreck, F. Creation of ultracold Sr2 molecules in the electronic ground state. Phys. Rev. Lett. 109, 115302 (2012).
Ospelkaus, S. et al. Efficient state transfer in an ultracold dense gas of heteronuclear molecules. Nat. Phys. 4, 622–626 (2008).
Aikawa, K. et al. Toward the production of quantum degenerate bosonic polar molecules, 41K87Rb. New J. Phys. 11, 055035 (2009).
Gregory, P. D. et al. A simple, versatile laser system for the creation of ultracold ground state molecules. New J. Phys. 17, 055006 (2015).
Ospelkaus, S. et al. Controlling the hyperfine state of rovibronic ground-state polar molecules. Phys. Rev. Lett. 104, 030402 (2010).
Aldegunde, J., Rivington, B. A., Żuchowski, P. S. & Hutson, J. M. Hyperfine energy levels of alkali-metal dimers: ground-state polar molecules in electric and magnetic fields. Phys. Rev. A 78, 033434 (2008).
Will, S. A., Park, J. W., Yan, Z. Z., Loh, H. & Zwierlein, M. W. Coherent microwave control of ultracold 23Na40K molecules. Phys. Rev. Lett. 116, 225306 (2016).
Gregory, P. D., Aldegunde, J., Hutson, J. M. & Cornish, S. L. Controlling the rotational and hyperfine state of ultracold 87Rb133Cs molecules. Phys. Rev. A 94, 041403(R) (2016).
Park, J. W., Yan, Z. Z., Loh, H., Will, S. A. & Zwierlein, M. W. Second-scale nuclear spin coherence time of trapped ultracold 23Na40K molecules. Preprint at http://arxiv.org/abs/1606.04184 (2016).
Neyenhuis, B. et al. Anisotropic polarizability of ultracold polar 40K87Rb molecules. Phys. Rev. Lett. 109, 230403 (2012).
Ye, J., Kimble, H. J. & Katori, H. Quantum state engineering and precision metrology using state-insensitive light traps. Science 320, 1734–1738 (2008).
Kotochigova, S. & DeMille, D. Electric-field-dependent dynamic polarizability and state-insensitive conditions for optical trapping of diatomic polar molecules. Phys. Rev. A 82, 063421 (2010).
Idziaszek, Z. & Julienne, P. S. Universal rate constants for reactive collisions of ultracold molecules. Phys. Rev. Lett. 104, 113202 (2010).
Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327, 853–857 (2010).
Ni, K.-K. et al. Dipolar collisions of polar molecules in the quantum regime. Nature 464, 1324–1328 (2010).
de Miranda, M. H. G. et al. Controlling the quantum stereodynamics of ultracold bimolecular reactions. Nat. Phys. 7, 502–507 (2011).
Chotia, A. et al. Long-lived dipolar molecules and Feshbach molecules in a 3D optical lattice. Phys. Rev. Lett. 108, 080405 (2012).
Büchler, H. P. et al. Strongly correlated 2D quantum phases with cold polar molecules: controlling the shape of the interaction potential. Phys. Rev. Lett. 98, 060404 (2007).
Micheli, A., Pupillo, G., Büchler, H. P. & Zoller, P. Cold polar molecules in two-dimensional traps: tailoring interactions with external fields for novel quantum phases. Phys. Rev. A 76, 043604 (2007).
Syassen, N. et al. Strong dissipation inhibits losses and induces correlations in cold molecular gases. Science 320, 1329–1331 (2008).
Yan, B. et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013).
Zhu, B. et al. Suppressing the loss of ultracold molecules via the continuous quantum Zeno effect. Phys. Rev. Lett. 112, 070404 (2014).
Croft, J. F. E. & Bohn, J. L. Long-lived complexes and chaos in ultracold molecular collisions. Phys. Rev. A 89, 012714 (2014).
Mayle, M., Quéméner, G., Ruzic, B. P. & Bohn, J. L. Scattering of ultracold molecules in the highly resonant regime. Phys. Rev. A 87, 012709 (2013).
Barnett, R., Petrov, D., Lukin, M. & Demler, E. Quantum magnetism with multicomponent dipolar molecules in an optical lattice. Phys. Rev. Lett. 96, 190401 (2006).
Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).
Kaden, R. A. et al. Many-body dynamics of dipolar molecules in an optical lattice. Phys. Rev. Lett. 113, 195302 (2014).
de Paz, A. et al. Nonequilibrium quantum magnetism in a dipolar lattice gas. Phys. Rev. Lett. 111, 185305 (2013).
Damski, B. et al. Creation of a dipolar superfluid in optical lattices. Phys. Rev. Lett. 90, 110401 (2003).
Freericks, J. K. et al. Improving the efficiency of ultracold dipolar molecule formation by first loading onto an optical lattice. Phys. Rev. A 81, 011605 (2010).
Schneider, U. et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 322, 1520–1525 (2008).
Volz, T. et al. Preparation of a quantum state with one molecule at each site of an optical lattice. Nat. Phys. 2, 692–695 (2006).
Covey, J. P. et al. Doublon dynamics and polar molecule production in an optical lattice. Nat. Commun. 7, 11279 (2016).
Reichsöllner, L., Schindewolf, A., Takekoshi, T., Grimm, R. & Nägerl, H.-C. Quantum engineering of a low-entropy gas of heteronuclear bosonic molecules in an optical lattice. Preprint at http://arxiv.org/abs/1607.06536 (2016).
Haller, E. et al. Single-atom imaging of fermions in a quantum-gas microscope. Nat. Phys. 11, 738–742 (2015).
Cheuk, L. W. et al. Quantum-gas microscope for fermionic atoms. Phys. Rev. Lett. 114, 193001 (2015).
Parsons, M. F. et al. Site-resolved imaging of fermionic 6Li in an optical lattice. Phys. Rev. Lett. 114, 213002 (2015).
Omran, A. et al. Microscopic observation of Pauli blocking in degenerate fermionic lattice gases. Phys. Rev. Lett. 115, 263001 (2015).
Gröbner, M. et al. A new quantum gas apparatus for ultracold mixtures of K and Cs and KCs ground-state molecules. J. Mod. Opt. 63, 1829–1839 (2016).
Hutzler, N. R., Liu, L. R., Yu, Y. & Ni, K.-K. Eliminating light shifts in single-atom optical traps. Preprint at http://arxiv.org/abs/1605.09422 (2016).
Żuchowski, P. S., Aldegunde, J. & Hutson, J. M. Ultracold RbSr molecules can be formed by magnetoassociation. Phys. Rev. Lett. 105, 153201 (2010).
Pasquiou, B. et al. Quantum degenerate mixtures of strontium and rubidium atoms. Phys. Rev. A 88, 023601 (2013).
Dowd, W. et al. Magnetic field dependent interactions in an ultracold Li-Yb(3P2) mixture. New J. Phys. 17, 055007 (2015).
Kemp, S. L. et al. Production and characterization of a dual species magneto-optical trap of cesium and ytterbium. Rev. Sci. Instrum. 87, 023105 (2016).
Baier, S. et al. Extended Bose–Hubbard models with ultracold magnetic atoms. Science 352, 201–205 (2016).
Yi, S., Li, T. & Sun, C. P. Novel quantum phases of dipolar Bose gases in optical lattices. Phys. Rev. Lett. 98, 260405 (2007).
Pollet, L., Picon, J. D., Büchler, H. P. & Troyer, M. Supersolid phase with cold polar molecules on a triangular lattice. Phys. Rev. Lett. 104, 125302 (2010).
Capogrosso-Sansone, B., Trefzger, C., Lewenstein, M., Zoller, P. & Pupillo, G. Quantum phases of cold polar molecules in 2d optical lattices. Phys. Rev. Lett. 104, 125301 (2010).
Ferrier-Barbut, I., Kadau, H., Schmitt, M., Wenzel, M. & Pfau, T. Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett. 116, 215301 (2016).
Chomaz, L. et al. Quantum-fluctuation-driven crossover from a dilute Bose-Einstein condensate to a macro-droplet in a dipolar quantum fluid. Phys. Rev. X 6, 041039 (2016).
Li, Y. & Wu, C. Unconventional symmetries of Fermi liquid and Cooper pairing properties with electric and magnetic dipolar fermions. J. Phys. Condens. Matter 26, 493203 (2014).
DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).
Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).
Kozlov, M. G. & Labzowsky, L. N. Parity violation effects in diatomics. J. Phys. B 28, 1933–1961 (1995).
Hudson, E. R., Lewandowski, H. J., Sawyer, B. C. & Ye, J. Cold molecule spectroscopy for constraining the evolution of the fine structure constant. Phys. Rev. Lett. 96, 143004 (2006).
Hudson, J. J. et al. Improved measurement of the shape of the electron. Nature 473, 493–496 (2011).
Loh, H. et al. Precision spectroscopy of polarized molecules in an ion trap. Science 342, 1220–1222 (2013).
The ACME Collaboration, Baron, J. et al. Order of magnitude smaller limit on the electric dipole moment of the electron. Science 343, 269–272 (2014).
Acknowledgements
This article is dedicated to the memory of Deborah. S. Jin, who passed away on 15 September 2016 after a courageous battle with cancer. Debbie was a beloved friend, colleague, and teacher. She demonstrated an unparalleled combination of scientific vision, creativity, and detail-oriented experimental excellence. Among her many outstanding accomplishments, Debbie was a guiding force on the JILA KRb polar molecule collaboration for the past dozen years. Her vision is clearly manifest in the legacy of our work. Her ideas and sense of direction for our experiment will continue to influence our work for many years to come. Even when we progress sufficiently far on the experiment beyond anything we could have imagined during her time, we will continue to feel inspired by her creativity and enthusiasm. We, and the entire physics community, will deeply miss her.
Author information
Authors and Affiliations
Contributions
All authors contributed to the writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Moses, S., Covey, J., Miecnikowski, M. et al. New frontiers for quantum gases of polar molecules. Nature Phys 13, 13–20 (2017). https://doi.org/10.1038/nphys3985
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys3985
This article is cited by
-
Density-wave ordering in a unitary Fermi gas with photon-mediated interactions
Nature (2023)
-
Probing site-resolved correlations in a spin system of ultracold molecules
Nature (2023)
-
Mott insulator of strongly interacting two-dimensional semiconductor excitons
Nature Physics (2022)
-
Spectroscopic probes of quantum gases
Nature Physics (2021)
-
Ultracold chemical reactions reveal the quantum mechanism of product formation
Nature (2021)