Abstract

The intriguing many-body phases of quantum matter arise from the interplay of particle interactions, spatial symmetries, and external fields. Generating these phases in an engineered system could provide deeper insight into their nature. Using superconducting qubits, we simultaneously realize synthetic magnetic fields and strong particle interactions, which are among the essential elements for studying quantum magnetism and fractional quantum Hall phenomena. The artificial magnetic fields are synthesized by sinusoidally modulating the qubit couplings. In a closed loop formed by the three qubits, we observe the directional circulation of photons, a signature of broken time-reversal symmetry. We demonstrate strong interactions through the creation of photon vacancies, or ‘holes’, which circulate in the opposite direction. The combination of these key elements results in chiral ground-state currents. Our work introduces an experimental platform for engineering quantum phases of strongly interacting photons.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    More is different. Science 177, 393–396 (1972).

  2. 2.

    , & Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

  3. 3.

    , , , & Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009).

  4. 4.

    , , , & Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013).

  5. 5.

    et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013).

  6. 6.

    et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

  7. 7.

    , , , & Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

  8. 8.

    et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

  9. 9.

    , & Topological photonics. Nat. Photon. 8, 821–829 (2014).

  10. 10.

    , , , & Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photon. 8, 701–705 (2014).

  11. 11.

    , , , & Time- and site-resolved dynamics in a topological circuit. Phys. Rev. X 5, 021031 (2015).

  12. 12.

    et al. Chiral quantum walks. Phys. Rev. A 93, 042302 (2016).

  13. 13.

    , & Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

  14. 14.

    Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

  15. 15.

    , & Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).

  16. 16.

    & Goals and opportunities in quantum simulation. Nat. Phys. 8, 264–266 (2012).

  17. 17.

    & Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

  18. 18.

    , & On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292–299 (2012).

  19. 19.

    & Quantum simulators. Science 326, 108–111 (2009).

  20. 20.

    , & Fractional quantum Hall regime of a gas of ultracold atoms. Solid State Commun. 127, 155–162 (2003).

  21. 21.

    , & Fractional quantum Hall state in coupled cavities. Phys. Rev. Lett. 101, 246809 (2008).

  22. 22.

    , & Fractional quantum Hall physics in Jaynes–Cummings–Hubbard lattices. Phys. Rev. Lett. 108, 223602 (2012).

  23. 23.

    , & Anomalous Hall effects of light and chiral edge modes on the kagomé lattice. Phys. Rev. A 86, 053804 (2012).

  24. 24.

    , & Engineering three-body interaction and Pfaffian states in circuit QED systems. Phys. Rev. B 90, 060503 (2014).

  25. 25.

    , & Chemical potential for light by parametric coupling. Phys. Rev. B 92, 174305 (2015).

  26. 26.

    , , , & Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

  27. 27.

    & Topological flat band models and fractional Chern insulators. Int. J. Mod. Phys. B 27, 1330017 (2013).

  28. 28.

    & Exact parent Hamiltonian for the quantum Hall states in a lattice. Phys. Rev. Lett. 105, 215303 (2010).

  29. 29.

    & Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms. New J. Phys. 5, 56 (2003).

  30. 30.

    et al. Non-Abelian gauge fields and topological insulators in shaken optical lattices. Phys. Rev. Lett. 109, 145301 (2012).

  31. 31.

    , , & Time-reversal-symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A 82, 043811 (2010).

  32. 32.

    , & Synthetic gauge fields and homodyne transmission in Jaynes–Cummings lattices. New J. Phys. 13, 095008 (2011).

  33. 33.

    , & Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

  34. 34.

    Universal two-qubit interactions, measurement, and cooling for quantum simulation and computing. Phys. Rev. A 92, 012302 (2015).

  35. 35.

    et al. Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett. 113, 220502 (2014).

  36. 36.

    , & Experimental demonstration of a photonic Aharonov–Bohm effect at radio frequencies. Phys. Rev. B 87, 060301 (2013).

  37. 37.

    , , & Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops. Nat. Phys. 10, 923–927 (2014).

  38. 38.

    , , , & On-chip superconducting microwave circulator from synthetic rotation. Phys. Rev. Appl. 4, 034002 (2015).

  39. 39.

    & Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008).

  40. 40.

    , , & Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

  41. 41.

    et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

  42. 42.

    & Chiral ladders and the edges of quantum Hall insulators. Phys. Rev. A 89, 023619 (2014).

  43. 43.

    & Single-site-resolved measurement of the current statistics in optical lattices. Phys. Rev. A 89, 061601 (2014).

  44. 44.

    et al. Observation of chiral currents with ultracold atoms in bosonic ladders. Nat. Phys. 10, 588–593 (2014).

  45. 45.

    & Abelian and non-abelian statistics in the coherent state representation. Phys. Rev. X 1, 021015 (2011).

  46. 46.

    , & Induced self-stabilization in fractional quantum Hall states of light. Phys. Rev. X 4, 031039 (2014).

  47. 47.

    , , , & Photon solid phases in driven arrays of nonlinearly coupled cavities. Phys. Rev. Lett. 110, 163605 (2013).

  48. 48.

    et al. Signatures of the superfluid-insulator phase transition in laser-driven dissipative nonlinear cavity arrays. Phys. Rev. A 81, 061801 (2010).

Download references

Acknowledgements

We acknowledge discussions with L. Lamata, A. Rahmani, E. Rico, M. Sanz and E. Solano. Devices were made at the UCSB Nanofab Facility, part of the NSF-funded NNIN, and the NanoStructures Cleanroom Facility.

Author information

Author notes

    • P. Roushan
    • , C. Neill
    •  & A. Megrant

    These authors contributed equally to this work.

Affiliations

  1. Google Inc., Santa Barbara, California 93117, USA

    • P. Roushan
    • , A. Megrant
    • , Y. Chen
    • , R. Barends
    • , A. Fowler
    • , E. Jeffrey
    • , J. Kelly
    • , E. Lucero
    • , J. Mutus
    • , M. Neeley
    • , D. Sank
    • , T. White
    •  & J. Martinis
  2. Department of Physics, University of California, Santa Barbara, California 93106, USA

    • C. Neill
    • , B. Campbell
    • , Z. Chen
    • , B. Chiaro
    • , A. Dunsworth
    • , P. J. J. O’Malley
    • , C. Quintana
    • , A. Vainsencher
    • , J. Wenner
    •  & J. Martinis
  3. Google Inc., Los Angeles, California 90291, USA

    • R. Babbush
    •  & H. Neven
  4. The Graduate Center, CUNY, New York, New York 10016, USA

    • E. Kapit
  5. Department of Physics, Tulane University, New Orleans, Louisiana 70118, USA

    • E. Kapit

Authors

  1. Search for P. Roushan in:

  2. Search for C. Neill in:

  3. Search for A. Megrant in:

  4. Search for Y. Chen in:

  5. Search for R. Babbush in:

  6. Search for R. Barends in:

  7. Search for B. Campbell in:

  8. Search for Z. Chen in:

  9. Search for B. Chiaro in:

  10. Search for A. Dunsworth in:

  11. Search for A. Fowler in:

  12. Search for E. Jeffrey in:

  13. Search for J. Kelly in:

  14. Search for E. Lucero in:

  15. Search for J. Mutus in:

  16. Search for P. J. J. O’Malley in:

  17. Search for M. Neeley in:

  18. Search for C. Quintana in:

  19. Search for D. Sank in:

  20. Search for A. Vainsencher in:

  21. Search for J. Wenner in:

  22. Search for T. White in:

  23. Search for E. Kapit in:

  24. Search for H. Neven in:

  25. Search for J. Martinis in:

Contributions

P.R., C.N. and A.M. performed the experiment. E.K. provided theoretical assistance. P.R. analysed the data, and with C.N. and E.K. co-wrote the manuscript and Supplementary Information. All of the UCSB and Google team members contributed to the experimental set-up. All authors contributed to the manuscript preparation.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to P. Roushan.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys3930

Further reading