Abstract
The intriguing many-body phases of quantum matter arise from the interplay of particle interactions, spatial symmetries, and external fields. Generating these phases in an engineered system could provide deeper insight into their nature. Using superconducting qubits, we simultaneously realize synthetic magnetic fields and strong particle interactions, which are among the essential elements for studying quantum magnetism and fractional quantum Hall phenomena. The artificial magnetic fields are synthesized by sinusoidally modulating the qubit couplings. In a closed loop formed by the three qubits, we observe the directional circulation of photons, a signature of broken time-reversal symmetry. We demonstrate strong interactions through the creation of photon vacancies, or ‘holes’, which circulate in the opposite direction. The combination of these key elements results in chiral ground-state currents. Our work introduces an experimental platform for engineering quantum phases of strongly interacting photons.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Fully integrated topological electronics
Scientific Reports Open Access 04 August 2022
-
Atom-optically synthetic gauge fields for a noninteracting Bose gas
Light: Science & Applications Open Access 07 January 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Anderson, P. W. More is different. Science 177, 393–396 (1972).
Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).
Lin, Y.-J., Compton, R., Jimenez-Garcia, K., Porto, J. & Spielman, I. Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009).
Miyake, H., Siviloglou, G. A., Kennedy, C. J., Burton, W. C. & Ketterle, W. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013).
Aidelsburger, M. et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013).
Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).
Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).
Rechtsman, M. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).
Lu, L., Joannopoulos, J. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).
Tzuang, L., Fang, K., Nussenzveig, P., Fan, S. & Lipson, M. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photon. 8, 701–705 (2014).
Ningyuan, J., Owens, C., Sommer, A., Schuster, D. & Simon, J. Time- and site-resolved dynamics in a topological circuit. Phys. Rev. X 5, 021031 (2015).
Lu, D. et al. Chiral quantum walks. Phys. Rev. A 93, 042302 (2016).
Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).
Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).
Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).
Ignacio Cirac, J. & Zoller, P. Goals and opportunities in quantum simulation. Nat. Phys. 8, 264–266 (2012).
Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).
Houck, A. A., Tureci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292–299 (2012).
Buluta, I. & Nori, F. Quantum simulators. Science 326, 108–111 (2009).
Paredes, B., Zoller, P. & Cirac, J. I. Fractional quantum Hall regime of a gas of ultracold atoms. Solid State Commun. 127, 155–162 (2003).
Cho, J., Angelakis, D. G. & Bose, S. Fractional quantum Hall state in coupled cavities. Phys. Rev. Lett. 101, 246809 (2008).
Hayward, A. L. C., Martin, A. M. & Greentree, A. D. Fractional quantum Hall physics in Jaynes–Cummings–Hubbard lattices. Phys. Rev. Lett. 108, 223602 (2012).
Petrescu, A., Houck, A. A. & Le Hur, K. Anomalous Hall effects of light and chiral edge modes on the kagomé lattice. Phys. Rev. A 86, 053804 (2012).
Hafezi, M., Adhikari, P. & Taylor, J. M. Engineering three-body interaction and Pfaffian states in circuit QED systems. Phys. Rev. B 90, 060503 (2014).
Hafezi, M., Adhikari, P. & Taylor, J. M. Chemical potential for light by parametric coupling. Phys. Rev. B 92, 174305 (2015).
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
Bergholtz, E. J. & Liu, Z. Topological flat band models and fractional Chern insulators. Int. J. Mod. Phys. B 27, 1330017 (2013).
Kapit, E. & Mueller, E. Exact parent Hamiltonian for the quantum Hall states in a lattice. Phys. Rev. Lett. 105, 215303 (2010).
Jaksch, D. & Zoller, P. Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms. New J. Phys. 5, 56 (2003).
Hauke, P. et al. Non-Abelian gauge fields and topological insulators in shaken optical lattices. Phys. Rev. Lett. 109, 145301 (2012).
Koch, J., Houck, A. A., Le Hur, K. & Girvin, S. M. Time-reversal-symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A 82, 043811 (2010).
Nunnenkamp, A., Koch, J. & Girvin, S. M. Synthetic gauge fields and homodyne transmission in Jaynes–Cummings lattices. New J. Phys. 13, 095008 (2011).
Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).
Kapit, E. Universal two-qubit interactions, measurement, and cooling for quantum simulation and computing. Phys. Rev. A 92, 012302 (2015).
Chen, Y. et al. Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett. 113, 220502 (2014).
Fang, K., Yu, Z. & Fan, S. Experimental demonstration of a photonic Aharonov–Bohm effect at radio frequencies. Phys. Rev. B 87, 060301 (2013).
Estep, N. A., Sounas, D. L., Soric, J. & Alu, A. Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops. Nat. Phys. 10, 923–927 (2014).
Kerckhoff, J., Lalumiere, K., Chapman, B., Blais, A. & Lehnert, K. On-chip superconducting microwave circulator from synthetic rotation. Phys. Rev. Appl. 4, 034002 (2015).
Raghu, S. & Haldane, F. D. M. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008).
Wang, Z., Chong, Y., Joannopoulos, J. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).
Khanikaev, A. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).
Hugel, D. & Paredes, B. Chiral ladders and the edges of quantum Hall insulators. Phys. Rev. A 89, 023619 (2014).
Kessler, S. & Marquardt, F. Single-site-resolved measurement of the current statistics in optical lattices. Phys. Rev. A 89, 061601 (2014).
Atala, M. et al. Observation of chiral currents with ultracold atoms in bosonic ladders. Nat. Phys. 10, 588–593 (2014).
Flavin, J. & Seidel, A. Abelian and non-abelian statistics in the coherent state representation. Phys. Rev. X 1, 021015 (2011).
Kapit, E., Hafezi, M. & Simon, S. H. Induced self-stabilization in fractional quantum Hall states of light. Phys. Rev. X 4, 031039 (2014).
Jin, J., Rossini, D., Fazio, R., Leib, M. & Hartmann, M. J. Photon solid phases in driven arrays of nonlinearly coupled cavities. Phys. Rev. Lett. 110, 163605 (2013).
Tomadin, A. et al. Signatures of the superfluid-insulator phase transition in laser-driven dissipative nonlinear cavity arrays. Phys. Rev. A 81, 061801 (2010).
Acknowledgements
We acknowledge discussions with L. Lamata, A. Rahmani, E. Rico, M. Sanz and E. Solano. Devices were made at the UCSB Nanofab Facility, part of the NSF-funded NNIN, and the NanoStructures Cleanroom Facility.
Author information
Authors and Affiliations
Contributions
P.R., C.N. and A.M. performed the experiment. E.K. provided theoretical assistance. P.R. analysed the data, and with C.N. and E.K. co-wrote the manuscript and Supplementary Information. All of the UCSB and Google team members contributed to the experimental set-up. All authors contributed to the manuscript preparation.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 5598 kb)
Rights and permissions
About this article
Cite this article
Roushan, P., Neill, C., Megrant, A. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nature Phys 13, 146–151 (2017). https://doi.org/10.1038/nphys3930
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys3930
This article is cited by
-
Realization of a fractional quantum Hall state with ultracold atoms
Nature (2023)
-
A giant atom with modulated transition frequency
Frontiers of Physics (2023)
-
Quantum simulation of Hofstadter butterfly with synthetic gauge fields on two-dimensional superconducting-qubit lattices
Frontiers of Physics (2023)
-
Topological Wannier cycles induced by sub-unit-cell artificial gauge flux in a sonic crystal
Nature Materials (2022)
-
Fully integrated topological electronics
Scientific Reports (2022)