Abstract
The spin Hall effect in a non-magnetic metal with spin–orbit coupling injects transverse spin currents into adjacent magnetic layers, where the resulting spin transfer torque can drive spin wave auto-oscillations. Such spin Hall nano-oscillators (SHNOs) hold great promise as extremely compact and broadband microwave signal generators and magnonic spin wave injectors. Here we show that SHNOs can also be mutually synchronized with unprecedented efficiency. We demonstrate mutual synchronization of up to nine individual SHNOs, each separated by 300 nm. Through further tailoring of the connection regions we can extend the synchronization range to 4 μm. The mutual synchronization is observed electrically as an increase in the power and coherence of the microwave signal, and confirmed optically using micro-Brillouin light scattering microscopy as two spin wave regions sharing the same spectral content, in agreement with our micromagnetic simulations.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).
Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).
Ralph, D. & Stiles, M. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).
Demidov, V. E., Urazhdin, S. & Demokritov, S. O. Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators. Nat. Mater. 9, 984–988 (2010).
Madami, M. et al. Direct observation of a propagating spin wave induced by spin-transfer torque. Nat. Nanotech. 6, 635–638 (2011).
Tsoi, M. et al. Generation and detection of phase-coherent current-driven magnons in magnetic multilayers. Nature 406, 46–48 (2000).
Rippard, W., Pufall, M., Kaka, S., Russek, S. & Silva, T. Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 027201 (2004).
Silva, T. & Rippard, W. Developments in nano-oscillators based upon spin-transfer point-contact devices. J. Magn. Magn. Mater. 320, 1260–1271 (2008).
Bonetti, S., Muduli, P., Mancoff, F. & Åkerman, J. Spin torque oscillator frequency versus magnetic field angle: the prospect of operation beyond 65 GHz. Appl. Phys. Lett. 94, 102507 (2009).
Bonetti, S. et al. Experimental evidence of self-localized and propagating spin wave modes in obliquely magnetized current-driven nanocontacts. Phys. Rev. Lett. 105, 217204 (2010).
Bonetti, S. & Åkerman, J. Nano-contact spin-torque oscillators as magnonic building blocks. Top. Appl. Phys. 125, 177–187 (2013).
Urazhdin, S. et al. Nanomagnonic devices based on the spin-transfer torque. Nat. Nanotech. 9, 509–513 (2014).
Dumas, R. et al. Recent advances in nanocontact spin-torque oscillators. IEEE Trans. Magn. 50, 4100107 (2014).
Slonczewski, J. Excitation of spin waves by an electric current. J. Magn. Magn. Mater. 195, 261–268 (1999).
Kalinikos, B. A. & Slavin, A. N. Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C 19, 7013–7033 (1986).
Hoefer, M., Silva, T. & Stiles, M. Model for a collimated spin-wave beam generated by a single-layer spin torque nanocontact. Phys. Rev. B 77, 144401 (2008).
Dumas, R. K. et al. Spin-wave-mode coexistence on the nanoscale: a consequence of the Oersted-field-induced asymmetric energy landscape. Phys. Rev. Lett. 110, 257202 (2013).
Madami, M. et al. Propagating spin waves excited by spin-transfer torque: a combined electrical and optical study. Phys. Rev. B 92, 024403 (2015).
Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).
Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).
Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).
Demidov, V. E. et al. Magnetic nano-oscillator driven by pure spin current. Nat. Mater. 11, 1028–1031 (2012).
Liu, R. H., Lim, W. L. & Urazhdin, S. Spectral characteristics of the microwave emission by the spin Hall nano-oscillator. Phys. Rev. Lett. 110, 147601 (2013).
Duan, Z. et al. Nanowire spin torque oscillator driven by spin orbit torques. Nat. Commun. 5, 5616 (2014).
Demidov, V. E., Urazhdin, S., Zholud, A., Sadovnikov, A. V. & Demokritov, S. O. Nanoconstriction-based spin-Hall nano-oscillator. Appl. Phys. Lett. 105, 172410 (2014).
Ranjbar, M. et al. CoFeB-based spin Hall nano-oscillators. IEEE Magn. Lett. 5, 3000504 (2014).
Langenfeld, S. et al. Exchange magnon induced resistance asymmetry in permalloy spin-Hall oscillators. Appl. Phys. Lett. 108, 192402 (2016).
Slavin, A. & Tiberkevich, V. Nonlinear auto-oscillator theory of microwave generation by spin-polarized current. IEEE Trans. Magn. 45, 1875–1918 (2009).
Mancoff, F. B., Rizzo, N. D., Engel, B. N. & Tehrani, S. Phase-locking in double-point-contact spin-transfer devices. Nature 437, 393–395 (2005).
Kaka, S. et al. Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437, 389–392 (2005).
Pufall, M., Rippard, W., Russek, S., Kaka, S. & Katine, J. Electrical measurement of spin-wave interactions of proximate spin transfer nanooscillators. Phys. Rev. Lett. 97, 087206 (2006).
Sani, S. et al. Mutually synchronized bottom-up multi-nanocontact spin-torque oscillators. Nat. Commun. 4, 2731 (2013).
Houshang, A. et al. Spin-wave-beam driven synchronization of nanocontact spin-torque oscillators. Nat. Nanotech. 11, 280–286 (2016).
Demidov, V. E. et al. Synchronization of spin Hall nano-oscillators to external microwave signals. Nat. Commun. 5, 3179 (2014).
Kendziorczyk, T. & Kuhn, T. Mutual synchronization of nanoconstriction-based spin Hall nano-oscillators through evanescent and propagating spin waves. Phys. Rev. B 93, 134413 (2016).
Slavin, A. N. & Kabos, P. Approximate theory of microwave generation in a current-driven magnetic nanocontact magnetized in an arbitrary direction. IEEE Trans. Magn. 41, 1264–1273 (2005).
Slavin, A. & Tiberkevich, V. Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet.. Phys. Rev. Lett. 95, 237201 (2005).
Consolo, G., Lopez-Diaz, L., Torres, L. & Azzerboni, B. Magnetization dynamics in nanocontact current controlled oscillators. Phys. Rev. B 75, 214428 (2007).
Houssameddine, D. et al. Temporal coherence of MgO based magnetic tunnel junction spin torque oscillators. Phys. Rev. Lett. 102, 257202 (2009).
Devolder, T. et al. Auto-oscillation and narrow spectral lines in spin-torque oscillators based on MgO magnetic tunnel junctions. J. Appl. Phys. 106, 103921 (2009).
Keller, M., Pufall, M., Rippard, W. & Silva, T. Nonwhite frequency noise in spin torque oscillators and its effect on spectral linewidth. Phys. Rev. B 82, 054416 (2010).
Eklund, A. et al. Dependence of the colored frequency noise in spin torque oscillators on current and magnetic field. Appl. Phys. Lett. 104, 092405 (2014).
Yang, L. et al. Reduction of phase noise in nanowire spin orbit torque oscillators. Sci. Rep. 5, 16942 (2015).
Demidov, V. E., Urazhdin, S., Rinkevich, A. B., Reiss, G. & Demokritov, S. O. Spin Hall controlled magnonic microwaveguides. Appl. Phys. Lett. 104, 152402 (2014).
An, K. et al. Control of propagating spin waves via spin transfer torque in a metallic bilayer waveguide. Phys. Rev. B 89, 140405 (2014).
Evelt, M. et al. High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque. Appl. Phys. Lett. 108, 172406 (2016).
Kim, J.-V., Tiberkevich, V. & Slavin, A. Generation linewidth of an auto-oscillator with a nonlinear frequency shift: spin-torque nano-oscillator. Phys. Rev. Lett. 100, 017207 (2008).
Tiberkevich, V. S., Slavin, A. N. & Kim, J.-V. Temperature dependence of nonlinear auto-oscillator linewidths: application to spin-torque nano-oscillators. Phys. Rev. B 78, 092401 (2008).
Maehara, H. et al. Large emission power over 2 μW with high Q factor obtained from nanocontact magnetic-tunnel-junction-based spin torque oscillator. Appl. Phys. Exp. 6, 113005 (2013).
Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).
Khitun, A., Bao, M. & Wang, K. L. Magnonic logic circuits. J. Phys. D 43, 264005 (2010).
Khitun, A. & Wang, K. L. Non-volatile magnonic logic circuits engineering. J. Appl. Phys. 110, 034306 (2011).
Macià, F., Kent, A. D. & Hoppensteadt, F. C. Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation. Nanotechnology 22, 095301 (2011).
Klingler, S. et al. Design of a spin-wave majority gate. Appl. Phys. Lett. 105, 152410 (2014).
Fell, J. & Axmacher, N. The role of phase synchronization in memory processes. Nat. Rev. Neurosci. 12, 105–118 (2011).
Locatelli, N., Cros, V. & Grollier, J. Spin-torque building blocks. Nat. Mater. 13, 11–20 (2013).
Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).
Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).
Acknowledgements
We thank M. Madami for assistance in building the μ-BLS microscope. This work was supported by the European Research Council (ERC) under the European Community’s Seventh Framework Programme (FP/2007-2013)/ERC Grant 307144 ‘MUSTANG’. This work was also supported by the Swedish Research Council (VR), the Swedish Foundation for Strategic Research (SSF), and the Knut and Alice Wallenberg Foundation.
Author information
Authors and Affiliations
Contributions
A.A.A. designed the devices. P.D. and A.H. fabricated the devices. A.A.A., P.D. and A.H. performed all electrical measurements. R.K.D. and A.A.A. built the μ-BLS microscope. A.A.A. carried out all optical measurements. A.A.A. and M.D. performed the micromagnetic simulations. All authors contributed to the data analysis and co-wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 1320 kb)
Rights and permissions
About this article
Cite this article
Awad, A., Dürrenfeld, P., Houshang, A. et al. Long-range mutual synchronization of spin Hall nano-oscillators. Nature Phys 13, 292–299 (2017). https://doi.org/10.1038/nphys3927
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys3927
This article is cited by
-
Hybrid spin Hall nano-oscillators based on ferromagnetic metal/ferrimagnetic insulator heterostructures
Nature Communications (2023)
-
Tunable coupling in magnetic thin film heterostructures with a magnetic phase transition
Scientific Reports (2023)
-
Spintronics intelligent devices
Science China Physics, Mechanics & Astronomy (2023)
-
Voltage-driven gigahertz frequency tuning of spin Hall nano-oscillators
Nature Communications (2022)
-
Elongated skyrmion as spin torque nano-oscillator and magnonic waveguide
Communications Physics (2022)