Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A proton density bubble in the doubly magic 34Si nucleus


Many properties of the atomic nucleus, such as vibrations, rotations and incompressibility, can be interpreted as due to a two-component quantum liquid of protons and neutrons. Electron scattering measurements on stable nuclei demonstrate that their central densities are saturated, as for liquid drops. In exotic nuclei near the limits of mass and charge, with large imbalances in their proton and neutron numbers, the possibility of a depleted central density, or a ‘bubble’ structure, has been discussed in a recurrent manner since the 1970s. Here we report first experimental evidence that points to a depletion of the central density of protons in the short-lived nucleus 34Si. The proton-to-neutron density asymmetry in 34Si offers the possibility to place constraints on the density and isospin dependence of the spin–orbit force—on which nuclear models have disagreed for decades—and on its stabilizing effect towards limits of nuclear existence.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Gamma-ray spectra of 33Al.
Figure 2: Level scheme of 33Al with parallel momentum distributions of the strongest populated states.
Figure 3: Neutron and proton density distributions of the 34Si and 36S nuclei.


  1. 1

    Schultz, H. P. Topological organic chemistry. Polyhedranes and prismanes. J. Org. Chem. 30, 1361–1364 (1965).

    Article  Google Scholar 

  2. 2

    Hoyle, F. On nuclear reactions occurring in very hot stars. I. The synthesis of elements from carbon to nickel. Astrophys. J. 1, 121–146 (1954).

    ADS  Article  Google Scholar 

  3. 3

    Freer, M. & Fynbo, H. O. U. The Hoyle state in 12C. Prog. Part. Nucl. Phys. 78, 1–23 (2014).

    ADS  Article  Google Scholar 

  4. 4

    Ebran, J.-P., Khan, E., Niks̆ić, T. & Vretenar, D. How atomic nuclei cluster. Nature 487, 341–344 (2012).

    ADS  Article  Google Scholar 

  5. 5

    Mottelson, B. in Nuclear Structure, Trends in Nuclear Physics, 100 Years Later (eds Nifenecker, H., Blaizot, J.-P., Bertsch, G. F., Weise, W. & David, F.) 25–122 (Elsevier, 1998).

    Google Scholar 

  6. 6

    Hofstadter, R. Electron scattering and nuclear structure. Rev. Mod. Phys. 28, 214–253 (1956).

    ADS  Article  Google Scholar 

  7. 7

    Campi, X. & Sprung, D. W. L. Possible bubble nuclei 36Ar and 200Hg. Phys. Lett. B 46, 291–295 (1973).

    ADS  Article  Google Scholar 

  8. 8

    Davis, K. T. R., Krieger, S. J. & Wong, C. Y. Generalized shells in nuclei: Hartree-Fock calculations for bubble nuclei. Nucl. Phys. A 216, 250–270 (1973).

    ADS  Article  Google Scholar 

  9. 9

    Khan, E., Grasso, M., Margueron, J. & Van Giai, N. Detecting bubbles in exotic nuclei. Nucl. Phys. A 800, 37–46 (2008).

    ADS  Article  Google Scholar 

  10. 10

    Grasso, M. et al. Nuclear ‘bubble’ structure in 34Si. Phys. Rev. C 79, 034318 (2009).

    ADS  Article  Google Scholar 

  11. 11

    Bender, M. et al. Shell structure of superheavy nuclei in self-consistent mean-field models. Phys. Rev. C 60, 034304 (1999).

    ADS  Article  Google Scholar 

  12. 12

    Dechargé, J., Berger, J.-F., Girod, M. & Dietrich, K. Bubbles and semi-bubbles as a new kind of superheavy nuclei. Nucl. Phys. A 716, 55–86 (2003).

    ADS  Article  Google Scholar 

  13. 13

    Cavedon, J. M. et al. Is the shell-model concept relevant for the nuclear interior? Phys. Rev. Lett. 49, 978–981 (1982).

    ADS  Article  Google Scholar 

  14. 14

    Li, J. J., Long, W. H., Song, J. L. & Zhao, Q. Pseudospin-orbit splitting and its consequences for the central depression in nuclear density. Phys. Rev. C 93, 054312 (2016).

    ADS  Article  Google Scholar 

  15. 15

    Wang, Y. Z., Hou, Z. Y., Zhang, Q. L., Tian, R. L. & Gu, J. Z. Pseudospin-orbit splitting and its consequences for the central depression in nuclear density. Phys. Rev. C 91, 017302 (2015).

    ADS  Article  Google Scholar 

  16. 16

    Afanasjev, A. V. & Frauendorf, S. Central depression in nuclear density and its consequences for the shell structure of superheavy nuclei. Phys. Rev. C 71, 024308 (2005).

    ADS  Article  Google Scholar 

  17. 17

    Yao, J.-M. et al. Beyond-mean-field study of the possible ‘bubble’ structure of 34Si. Phys. Rev. C 86, 014310 (2012).

    ADS  Article  Google Scholar 

  18. 18

    Khan, S. et al. The mass of 35P and spin-parity assignments for excited 35P states. Phys. Lett. B 156, 155–158 (1985).

    ADS  Article  Google Scholar 

  19. 19

    Mutschler, A. et al. Spectroscopy of 35P using the one-proton knockout reaction. Phys. Rev. C 93, 034333 (2016).

    ADS  Article  Google Scholar 

  20. 20

    Paschalis, S. et al. The performance of the gamma-ray energy tracking In-beam nuclear array GRETINA. Nucl. Instr. Meth. A 709, 44–55 (2013).

    ADS  Article  Google Scholar 

  21. 21

    Agostinelli, S. et al. Geant4: a simulation toolkit. Nucl. Instr. Methods A 506, 250–303 (2003).

    ADS  Article  Google Scholar 

  22. 22

    Tripathi, V. et al. Intruder configurations in the A = 33 isobars: 33Mg and 33Al. Phys. Rev. Lett. 101, 142504 (2008).

    ADS  Article  Google Scholar 

  23. 23

    Enders, J. et al. Single-neutron knockout from 34,35Si and 37S. Phys. Rev. C 65, 034318 (2002).

    ADS  Article  Google Scholar 

  24. 24

    Burgunder, G. et al. Experimental study of the two-body spin-orbit force in nuclei. Phys. Rev. Lett. 112, 042502 (2014).

    ADS  Article  Google Scholar 

  25. 25

    Ibbotson, R. W. et al. Quadrupole collectivity in 32,34,36,38Si and the N = 20 shell closure. Phys. Rev. Lett. 80, 2081–2084 (1998).

    ADS  Article  Google Scholar 

  26. 26

    Rotaru, F. et al. Unveiling the intruder deformed 02+ state in 34Si. Phys. Rev. Lett. 109, 092503 (2012).

    ADS  Article  Google Scholar 

  27. 27

    Ebran, J.-P. et al. Relativistic Hartree-Fock-Bogoliubov model for deformed nuclei. Phys. Rev. C 83, 064323 (2011).

    ADS  Article  Google Scholar 

  28. 28

    Sorlin, O. & Porquet, M. G. Evolution of the N = 28 shell closure: a test bench for nuclear forces. Phys. Scr. 152, 014003 (2013).

    Article  Google Scholar 

  29. 29

    Sorlin, O. & Porquet, M. G. Nuclear magic numbers: new features far from stability. Prog. Part. Nucl. Phys. 61, 602–673 (2008).

    ADS  Article  Google Scholar 

  30. 30

    Sharma, M. M., Lalazissis, G. A., Hillebrandt, W. & Ring, P. Shell effects in nuclei near the neutron-drip line. Phys. Rev. Lett. 72, 1431–1434 (1994).

    ADS  Article  Google Scholar 

  31. 31

    Sharma, M. M., Lalazissis König, G. & Ring, P. Isospin dependence of the spin-orbit force and effective nuclear potentials. Phys. Rev. Lett. 74, 3744–3747 (1995).

    ADS  Article  Google Scholar 

  32. 32

    Lalazissis, G. A. et al. Reduction of the spin-orbit potential in light drip-line nuclei. Phys. Lett. B 418, 7–12 (1998).

    ADS  Article  Google Scholar 

  33. 33

    Holt, J. W., Kaiser, N. & Weise, W. Nuclear energy density functional from chiral two-nucleon and three-nucleon interactions. Eur. Phys. J. A 47, 128–138 (2011).

    ADS  Article  Google Scholar 

  34. 34

    Reinhard, P.-G. & Flocard, H. Nuclear effective forces and isotope shifts. Nucl. Phys. A 584, 467–488 (1995).

    ADS  Article  Google Scholar 

  35. 35

    Todd-Rutel, B. G., Pieckarewicz, J. & Cottle, P. D. Spin-orbit splitting in low-j neutron orbits and proton densities in the nuclear interior. Phys. Rev. C 69, 021301 (2004).

    ADS  Article  Google Scholar 

  36. 36

    Harakeh, M. N. et al. Direct evidence for a new giant resonance at 80A−1/3 MeV in the lead region. Phys. Rev. Lett. 38, 676–679 (1977).

    ADS  Article  Google Scholar 

  37. 37

    Youngblood, D. H. et al. Isoscalar breathing-mode state in 144Sm and 208Pb. Phys. Rev. Lett. 39, 1188–1191 (1977).

    ADS  Article  Google Scholar 

  38. 38

    Vandebrouck, M. et al. Measurement of the isoscalar monopole response in the neutron-rich nucleus 68Ni. Phys. Rev. Lett. 113, 032504 (2014).

    ADS  Article  Google Scholar 

  39. 39

    Gade, A. et al. Reduction of spectroscopic strength: weakly-bound and strongly-bound single-particle states studied using one-nucleon knockout reactions. Phys. Rev. C 77, 044306 (2008).

    ADS  Article  Google Scholar 

  40. 40

    Stroberg, S. R. et al. Single-particle structure of silicon isotopes approaching 42Si. Phys. Rev. C 90, 034301 (2014).

    ADS  Article  Google Scholar 

  41. 41

    Tostevin, J. A. & Gade, A. Systematics of intermediate-energy single-nucleon removal cross sections. Phys. Rev. C 90, 057602 (2014).

    ADS  Article  Google Scholar 

  42. 42

    Pandharipande, V. R. et al. Independent particle motion and correlations in fermion systems. Rev. Mod. Phys. 69, 981–992 (1997).

    ADS  Article  Google Scholar 

  43. 43

    Barbieri, C. Role of long-range correlations in the quenching of spectroscopic factors. Phys. Rev. Lett. 103, 202502 (2009).

    ADS  Article  Google Scholar 

  44. 44

    Dickhoff, W. H. & Barbieri, C. Self-consistent Green’s function method for nuclei and nuclear matter. Prog. Part. Nucl. Phys. 52, 377–496 (2004).

    ADS  Article  Google Scholar 

  45. 45

    Duguet, Th., Hergert, H., Holt, J. D. & Somá, V. Nonobservable nature of the nuclear shell structure: meaning, illustrations, and consequences. Phys. Rev. C 92, 034313 (2015).

    ADS  Article  Google Scholar 

  46. 46

    Furnstahl, R. J. & Hammer, H.-W. Are occupation numbers observable? Phys. Lett. B 531, 203–208 (2002).

    ADS  Article  Google Scholar 

  47. 47

    Schiffer, J. P. et al. Test of sum rules in nucleon transfer reactions. Phys. Rev. Lett. 108, 022501 (2012).

    ADS  Article  Google Scholar 

  48. 48

    Mutschler, A. Le Noyau-Bulle de 34Si: un Outil Experimental pour Étudier L’interaction Spin-Orbite PhD thesis, Univ. Paris XI (2015);

Download references


This work is supported by the National Science Foundation (NSF) under Grant Nos. PHY-1102511 and PHY-1306297, the OTKA Contract No. K100835, and by the Institut Universitaire de France. GRETINA was funded by the US DOE—Office of Science. Operation of the array at NSCL is supported by the NSF under Cooperative Agreement PHY-1102511 (NSCL) and the DOE under grant DE-AC02-05CH11231 (LBNL). J.A.T. acknowledges support of the Science and Technology Facility Council (UK) grant ST/L005743.

Author information




A.M. performed the offline data analysis, A.Lem., D.W. and K.W. performed on-line data analysis and checked the integrity of data taking. K.W. and A.Lem. performed GEANT4 simulations and wrote parts of the offline sorting code. A.G. and J.A.T. performed reaction theory calculations. D.B. operated the S800 spectrometer. D.W. and F.Re. were responsible for the setting up, calibration and operation of the Gretina array. H.I. and K.W. helped to set up the Gretina array. The manuscript was prepared by O.S., A.M., J.A.T., A.G., A.Lem. and E.K. J.-P.E. performed relativistic mean field calculations. Z.D. and D.S. contributed to the offline data analysis of the γ-ray spectra and C.B., R.B., E.K., A.Lem., A.Lep., H.I., T.R., F.Ro., M.S., M.V. and S.R.S. checked data accumulation on-line. O.S. proposed the experiment and supervised the analysis.

Corresponding author

Correspondence to O. Sorlin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mutschler, A., Lemasson, A., Sorlin, O. et al. A proton density bubble in the doubly magic 34Si nucleus. Nature Phys 13, 152–156 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing