Abstract

The precise control of atom–light interactions is vital to many quantum technologies. For instance, atomic systems can be used to slow and store light, acting as a quantum memory. Optical storage can be achieved via stopped light, where no optical energy continues to exist in the atomic system, or as stationary light, where some optical energy remains present during storage. Here, we demonstrate a form of self-stabilizing stationary light. From any initial state, our atom–light system evolves to a stable configuration that may contain bright optical excitations trapped within the atomic ensemble. This phenomenon is verified experimentally in a cloud of cold Rb87 atoms. The spinwave in our atomic cloud is imaged from the side, allowing direct comparison with theoretical predictions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010).

  2. 2.

    , & Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

  3. 3.

    , , & Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

  4. 4.

    , & Quantum nonlinear optics—photon by photon. Nat. Photon. 8, 685–694 (2014).

  5. 5.

    , & Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 634–673 (2005).

  6. 6.

    , , & Observation of the nonlinear phase shift due to single post-selected photons. Nat. Phys. 11, 905–909 (2015).

  7. 7.

    et al. Attractive photons in a quantum nonlinear medium. Nature 502, 71–75 (2013).

  8. 8.

    , , & Low-light-level cross-phase-modulation based on stored light pulses. Phys. Rev. Lett. 96, 043603 (2006).

  9. 9.

    , , & Low-light-level cross-phase modulation with double slow light pulses. Phys. Rev. Lett. 106, 193006 (2011).

  10. 10.

    & Manipulating light pulses via dynamically controlled photonic band gap. Phys. Rev. Lett. 89, 143602 (2002).

  11. 11.

    , & Stationary pulses of light in an atomic medium. Nature 426, 638–641 (2003).

  12. 12.

    et al. Stationary light pulses in cold atomic media and without Bragg gratings. Phys. Rev. Lett. 102, 213601 (2009).

  13. 13.

    , , & Nonlinear optics with stationary pulses of light. Phys. Rev. Lett. 94, 063902 (2005).

  14. 14.

    & Quantum manipulation of two-color stationary light: quantum wavelength conversion. Phys. Rev. A 73, 033812 (2006).

  15. 15.

    & Quantum control and manipulation of multi-color light fields. Opt. Spectrosc. 103, 210–218 (2007).

  16. 16.

    , , & Coherent control of stationary light pulses. Opt. Commun. 264, 441–453 (2006).

  17. 17.

    & Stationary light pulses in ultracold atomic gases. Phys. Rev. A 75, 065804 (2007).

  18. 18.

    , & Decay of stationary light pulses in ultracold atoms. Phys. Rev. A 81, 033822 (2010).

  19. 19.

    et al. Formation of stationary light in a medium of nonstationary atoms. Phys. Rev. A 85, 023838 (2012).

  20. 20.

    et al. Coherent generation and dynamic manipulation of double stationary light pulses in a five-level double-tripod system of cold atoms. Phys. Rev. A 84, 063812 (2011).

  21. 21.

    & Trapping of light pulses in ensembles of stationary Λ atoms. Phys. Rev. A 75, 053802 (2007).

  22. 22.

    , & Stationary and quasistationary light pulses in three-level cold atomic systems. Phys. Rev. A 89, 043802 (2014).

  23. 23.

    , & Controlling the photonic band structure of optically driven cold atoms. J. Opt. Soc. Am. B 25, 1840–1849 (2008).

  24. 24.

    , & Stationary light pulses in cold thermal atomic clouds. Phys. Rev. A 82, 013807 (2010).

  25. 25.

    et al. Stationary light pulse in solids with long-lived spin coherence. Phys. Rev. A 83, 063804 (2011).

  26. 26.

    et al. Efficient generation and control of robust stationary light signals in a double-Λ system of cold atoms. Phys. Lett. A 376, 656–661 (2012).

  27. 27.

    , , , & Coherent generation and efficient manipulation of dual-channel robust stationary light pulses in ultracold atoms. J. Opt. Soc. Am. B 30, 2333–2339 (2013).

  28. 28.

    et al. Phase control of stationary light pulses due to a weak microwave coupling. Opt. Commun. 343, 183–187 (2015).

  29. 29.

    et al. Demonstration of the interaction between two stopped light pulses. Phys. Rev. Lett. 108, 173603 (2012).

  30. 30.

    , , & Observation of phase-dependent coherent population trapping in optically closed atomic systems. Euro. Phys. Lett. 31, 189–194 (1995).

  31. 31.

    , , , & Dark-state polaritons for multicomponent and stationary light fields. Phys. Rev. A 77, 063823 (2008).

  32. 32.

    et al. Highly efficient optical quantum memory with long coherence time in cold atoms. Optica 3, 100–107 (2016).

  33. 33.

    , , , & Storage and manipulation of light using a Raman gradient-echo process. J. Phys. B 45, 124004 (2012).

  34. 34.

    , , , & Precision spectral manipulation of optical pulses using a coherent photon echo memory. Opt. Lett. 35, 1091–1093 (2010).

  35. 35.

    et al. Precision spectral manipulation: a demonstration using a coherent optical memory. Phys. Rev. X 2, 021011 (2012).

  36. 36.

    , & Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing. Nat. Photon. 7, 138–141 (2013).

  37. 37.

    , , , & Observation of optical-fibre Kerr nonlinearity at the single-photon level. Nat. Photon. 3, 95–98 (2009).

  38. 38.

    Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor. Phys. Rev. Lett. 100, 233602 (2008).

  39. 39.

    , , & A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2014).

  40. 40.

    , , & Large conditional single-photon cross-phase modulation. Proc. Natl Acad. Sci. 113, 9740–9744 (2016).

  41. 41.

    , , & Nonlinear π phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom. Nature 8, 965–970 (2014).

  42. 42.

    & Nonlinear optics and quantum entanglement of ultraslow single photons. Phys. Rev. Lett. 84, 1419–1422 (2000).

  43. 43.

    , & Large cross-phase modulation between slow copropagating weak pulses in 87Rb. Phys. Rev. Lett. 97, 063901 (2006).

  44. 44.

    , & Short-pulse cross-phase modulation in an electromagnetically-induced-transparency medium. Phys. Rev. A 93, 013834 (2016).

  45. 45.

    Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006).

  46. 46.

    Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81, 043823 (2010).

  47. 47.

    , & Optical lifetime and linewidth studies of the 7F05D0 transition in EuCl3 6H2O: a potential material for quantum memory applications. J. Lumin. 133, 152–156 (2013).

  48. 48.

    , , & Efficient quantum memory for light. Nature 465, 1052–1056 (2010).

  49. 49.

    et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

  50. 50.

    , & Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose–Einstein condensates. Phys. Rev. Lett. 103, 2–5 (2009).

Download references

Acknowledgements

We thank A. Sørensen and J. Ott for helpful discussions regarding the treatment of multiple control fields. Our work was funded by the Australian Research Council (ARC) (CE110001027, FL150100019) and Y.-W.C. was supported by the National Research Foundation of Korea (NRF) (2014R1A6A3A03056704).

Author information

Affiliations

  1. Centre for Quantum Computation and Communication Technology, Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia

    • J. L. Everett
    • , G. T. Campbell
    • , Y.-W. Cho
    • , P. Vernaz-Gris
    • , D.B. Higginbottom
    • , O. Pinel
    • , P. K. Lam
    •  & B. C. Buchler
  2. Laboratoire Kastler Brossel, UPMC-Sorbonne Universites, CNRS, ENS-PSL Research University, Collège de France, 4 Place Jussieu, 75005 Paris, France

    • P. Vernaz-Gris
  3. Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia

    • N. P. Robins

Authors

  1. Search for J. L. Everett in:

  2. Search for G. T. Campbell in:

  3. Search for Y.-W. Cho in:

  4. Search for P. Vernaz-Gris in:

  5. Search for D.B. Higginbottom in:

  6. Search for O. Pinel in:

  7. Search for N. P. Robins in:

  8. Search for P. K. Lam in:

  9. Search for B. C. Buchler in:

Contributions

The theory in this paper was developed by J.L.E., G.T.C., Y.-W.C., P.V.-G., D.B.H. and O.P. The experiment was designed and carried out by J.L.E., G.T.C., Y.-W.C. and N.P.R. Results were analysed by J.L.E., G.T.C., Y.-W.C. and B.C.B. The paper was written by B.C.B., G.T.C., J.L.E., P.V.-G. and P.K.L.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to B. C. Buchler.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys3901

Further reading