Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exciton scattering and localization in branched dendrimeric structures

Abstract

π-conjugated dendrimers are molecular examples of tree-like structures known in physics as Bethe lattices. Electronic excitations in these systems can be spatially delocalized or localized depending on the branching topology. Without a priori knowledge of the localization pattern, understanding photoexcitation dynamics reflected in experimental optical spectra is difficult. ‘Supramolecular’-like quantum-chemical calculations quickly become intractable as the molecular size increases. Here we develop a reduced exciton-scattering (ES) model, which attributes excited states to standing waves in quasi-one-dimensional structures, assuming a quasiparticle picture of optical excitations. Direct quantum-chemical calculations of branched phenylacetylene chromophores are used to verify our model and to derive relevant parameters. Complex and non-trivial delocalization patterns of photoexcitations throughout the entire molecular tree can then be universally characterized and understood using the proposed ES method, completely bypassing ‘supramolecular’ calculations. This allows accurate modelling of excited-state dynamics in arbitrary branched structures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Supramolecular dendrimers are made up via branching of linear chains.
Figure 2: Exciton-scattering patterns given by contour plots of transition density matrices from the ground state to excited states of the molecules shown in Fig. 1.

Similar content being viewed by others

References

  1. Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    Article  ADS  Google Scholar 

  2. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  ADS  Google Scholar 

  3. Percec, V. et al. Self-organization of supramolecular helical dendrimers into complex electronic materials. Nature 419, 384–387 (2002).

    Article  ADS  Google Scholar 

  4. Yaliraki, S. N. & Ratner, M. A. Interplay of topology and chemical stability on the electronic transport of molecular junctions. Ann. NY Acad. Sci. 960, 153–162 (2002).

    Article  ADS  Google Scholar 

  5. Gilat, S. L., Adronov, A. & Frechet, J. M. J. Light harvesting and energy transfer in novel convergently constructed dendrimers. Angew. Chem. Int. Edn 38, 1422–1427 (1999).

    Article  Google Scholar 

  6. Gust, D., Moore, T. A. & Moore, A. L. Mimicking photosynthetic solar energy transduction. Acc. Chem. Res. 34, 40–48 (2001).

    Article  Google Scholar 

  7. Kopelman, R. et al. Spectroscopic evidence for excitonic localization in fractal antenna supermolecules. Phys. Rev. Lett. 78, 1239–1242 (1997).

    Article  ADS  Google Scholar 

  8. Peng, Z. H., Pan, Y. C., Xu, B. B. & Zhang, J. H. Synthesis and optical properties of novel unsymmetrical conjugated dendrimers. J. Am. Chem. Soc. 122, 6619–6623 (2000).

    Article  Google Scholar 

  9. Goodson, T. G. Optical excitations in organic dendrimers investigated by time-resolved and nonlinear optical spectroscopy. Acc. Chem. Res. 38, 99–107 (2005).

    Article  Google Scholar 

  10. Goodson, T. G. Time-resolved spectroscopy of organic dendrimers and branched chromophores. Ann. Rev. Phys. Chem. 56, 581–603 (2005).

    Article  ADS  Google Scholar 

  11. Devadoss, C., Bharathi, P. & Moore, J. S. Energy transfer in dendritic macromolecules: Molecular size effects and the role of an energy gradient. J. Am. Chem. Soc. 118, 9635–9644 (1996).

    Article  Google Scholar 

  12. Heijs, D. J., Malyshev, V. A. & Knoester, J. Trapping time statistics and efficiency of transport of optical excitations in dendrimers. J. Chem. Phys. 121, 4884–4892 (2004).

    Article  ADS  Google Scholar 

  13. BarHaim, A., Klafter, J. & Kopelman, R. Dendrimers as controlled artificial energy antennae. J. Am. Chem. Soc. 119, 6197–6198 (1997).

    Article  Google Scholar 

  14. Tretiak, S., Chernyak, V. & Mukamel, S. Localized electronic excitations in phenylacetylene dendrimers. J. Phys. Chem. B 102, 3310–3315 (1998).

    Article  Google Scholar 

  15. Poliakov, E. Y., Chernyak, V., Tretiak, S. & Mukamel, S. Exciton-scaling and optical excitations of self-similar phenylacetylene dendrimers. J. Chem. Phys. 110, 8161–8175 (1999).

    Article  ADS  Google Scholar 

  16. Thompson, A. L., Gaab, K. M., Xu, J. J., Bardeen, C. J. & Martinez, T. J. Variable electronic coupling in phenylacetylene dendrimers: The role of Forster, Dexter, and charge-transfer interactions. J. Phys. Chem. A 108, 671–682 (2004).

    Article  Google Scholar 

  17. Ortiz, W., Krueger, B. P., Kleiman, V. D., Krause, J. L. & Roitberg, A. E. Energy transfer in the nanostar: The role of coulombic coupling and dynamics. J. Phys. Chem. B 109, 11512–11519 (2005).

    Article  Google Scholar 

  18. Ortiz, W., Roitberg, A. E. & Krause, J. L. Molecular dynamics of poly(benzylphenyl ether) dendrimers: Effects of backfolding on Forster energy-transfer rates. J. Phys. Chem. B 108, 8218–8225 (2004).

    Article  Google Scholar 

  19. Melinger, J. S. et al. Optical and photophysical properties of light-harvesting phenylacetylene monodendrons based on unsymmetrical branching. J. Am. Chem. Soc. 124, 12002–12012 (2002).

    Article  Google Scholar 

  20. Atas, E., Peng, Z. H. & Kleiman, V. D. Energy transfer in unsymmetrical phenylene ethynylene dendrimers. J. Phys. Chem. B 109, 13553–13560 (2005).

    Article  Google Scholar 

  21. Tretiak, S., Saxena, A., Martin, R. L. & Bishop, A. R. Interchain electronic excitations in poly(phenylenevinylene) (PPV) aggregates. J. Phys. Chem. B 104, 7029–7037 (2000).

    Article  Google Scholar 

  22. Chernyak, V., Volkov, S. N. & Mukamel, S. Exciton coherence and electron energy loss spectroscopy of conjugated molecules. Phys. Rev. Lett. 86, 995–998 (2001).

    Article  ADS  Google Scholar 

  23. Chernyak, V., Volkov, S. N. & Mukamel, S. Electronic structure-factor, density matrices, and electron energy loss spectroscopy of conjugated oligomers. J. Phys. Chem. A 105, 1988–2004 (2001).

    Article  Google Scholar 

  24. Bonchev, D. & Mekenyan, O. G. (eds) in Graph Theoretical Approaches to Chemical Reactivity (Kluwer Academic, Boston, 1994).

  25. Piryatinski, A., Stepanov, M., Tretiak, S. & Chernyak, V. Semiclassical scattering on conical intersections. Phys. Rev. Lett. 95, 223001 (2005).

    Article  ADS  Google Scholar 

  26. Dreuw, A. & Head-Gordon, M. Single-reference ab initio methods for the calculation of excited states of large molecules. Chem. Rev. 105, 4009–4037 (2005).

    Article  Google Scholar 

  27. Tretiak, S., Igumenshchev, K. & Chernyak, V. Exciton sizes of conducting polymers predicted by time-dependent density functional theory. Phys. Rev. B 71, 33201 (2005).

    Article  ADS  Google Scholar 

  28. Anand, S. et al. Optical excitations in carbon architectures based on dodecadehydrotribenzo[18]annulene. J. Phys. Chem. A 110, 1305–1318 (2006).

    Article  Google Scholar 

  29. Mukamel, S., Tretiak, S., Wagersreiter, T. & Chernyak, V. Electronic coherence and collective optical excitations of conjugated molecules. Science 277, 781–787 (1997).

    Article  Google Scholar 

  30. Tretiak, S., Saxena, A., Martin, R. L. & Bishop, A. R. Conformational dynamics of photoexcited conjugated molecules. Phys. Rev. Lett. 89, 097402 (2002).

    Article  ADS  Google Scholar 

  31. Tretiak, S. & Mukamel, S. Density matrix analysis and simulation of electronic excitations in conjugated and aggregated molecules. Chem. Rev. 102, 3171–3212 (2002).

    Article  Google Scholar 

  32. Jang, S. J. & Silbey, R. J. Theory of single molecule line shapes of multichromophoric macromolecules. J. Chem. Phys. 118, 9312–9323 (2003).

    Article  ADS  Google Scholar 

  33. Coulson, C. A. & Longuet-Higgins, H. C. The electronic structure of conjugated systems. I. General theory. Proc. R. Soc. Lond. A 191, 39–60 (1947).

    Article  ADS  Google Scholar 

  34. Altmann, S. L. π–σ; electronic states in molecules. I. The Hückel approximation. Proc. R. Soc. Lond. A 210, 327–343 (1952).

    Article  ADS  Google Scholar 

  35. Frisch, M. J. et al. Gaussian 03 (Rev. C.02) (Gaussian, Wallingford, Connecticut, 2003).

    Google Scholar 

Download references

Acknowledgements

V.Y.C. acknowledges the support through the start-up funds from WSU. The research at LANL is supported by the Center for Integrated Nanotechnology (CINT), the Center for Nonlinear Studies (CNLS) and the OBES program of the US Department of Energy. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sergei Tretiak or Vladimir Y. Chernyak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C., Malinin, S., Tretiak, S. et al. Exciton scattering and localization in branched dendrimeric structures. Nature Phys 2, 631–635 (2006). https://doi.org/10.1038/nphys389

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys389

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing