Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators

Abstract

Temporal dissipative Kerr solitons in optical microresonators enable the generation of ultrashort pulses and low-noise frequency combs at microwave repetition rates. They have been demonstrated in a growing number of microresonator platforms, enabling chip-scale frequency combs, optical synthesis of low-noise microwaves and multichannel coherent communications. In all these applications, accessing and maintaining a single-soliton state is a key requirement—one that remains an outstanding challenge. Here, we study the dynamics of multiple-soliton states and report the discovery of a simple mechanism that deterministically switches the soliton state by reducing the number of solitons one by one. We demonstrate this control in Si3N4 and MgF2 resonators and, moreover, we observe a secondary peak to emerge in the response of the system to a pump modulation, an effect uniquely associated with the soliton regime. Exploiting this feature, we map the multi-stability diagram of a microresonator experimentally. Our measurements show the physical mechanism of the soliton switching and provide insight into soliton dynamics in microresonators. The technique provides a method to sequentially reduce, monitor and stabilize an arbitrary state with solitons, in particular allowing for feedback stabilization of single-soliton states, which is necessary for practical applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Forward and backward tuning of the pump.
Figure 2: Dynamical probing of temporal DKS in microresonators.
Figure 3: Deterministic switching of the soliton states.
Figure 4: Experimental mapping of soliton stability diagram and numerical simulations.

References

  1. Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  2. Kippenberg, T. J., Holzwarth, R. & Diddams, S. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    Article  ADS  Google Scholar 

  3. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    Article  ADS  Google Scholar 

  4. Savchenkov, A. A. et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett. 93, 243905 (2004).

    Article  ADS  Google Scholar 

  5. Herr, T. et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photon. 6, 480–487 (2012).

    Article  ADS  Google Scholar 

  6. Ferdous, F. et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat. Photon. 5, 770–776 (2011).

    Article  ADS  Google Scholar 

  7. Huang, S.-W. et al. A low-phase-noise 18 GHz Kerr frequency microcomb phase locked over 65 THz. Sci. Rep. 5, 13355 (2015).

    Article  ADS  Google Scholar 

  8. Papp, S. et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014).

    Article  ADS  Google Scholar 

  9. Pfeifle, J. et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photon. 8, 375–380 (2014).

    Article  ADS  Google Scholar 

  10. Pfeifle, J. et al. Full C and L-band transmission at 20 Tbit/s using cavity-soliton Kerr frequency combs. CLEO: 2015 Postdeadline Paper Digest JTh5C.8 (Optical Society of America, 2015).

    Chapter  Google Scholar 

  11. Cundiff, S. & Weiner, A. Optical arbitrary waveform generation. Nat. Photon. 4, 760–766 (2010).

    Article  ADS  Google Scholar 

  12. Del’Haye, P. et al. Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nat. Photon. 10, 516–520 (2016).

    Article  ADS  Google Scholar 

  13. Wang, C. et al. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nat. Commun. 4, 1345 (2013).

    Article  ADS  Google Scholar 

  14. Griffith, A. et al. Silicon-chip mid-infrared frequency comb generation. Nat. Commun. 6, 6299 (2015).

    Article  ADS  Google Scholar 

  15. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    Article  ADS  Google Scholar 

  16. Brasch, V. et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  17. Akhmediev, N. N. & Ankiewicz, A. Solitons Around Us: Integrable, Hamiltonian and Dissipative Systems 105–126 (Springer, 2003).

    Google Scholar 

  18. Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).

    Article  ADS  Google Scholar 

  19. Bao, C., Chang, W., Yang, C., Akhmediev, N. & Cundiff, S. T. Observation of coexisting dissipative solitons in a mode-locked fiber laser. Phys. Rev. Lett. 115, 253903 (2015).

    Article  ADS  Google Scholar 

  20. Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209–2211 (1987).

    Article  ADS  Google Scholar 

  21. Barashenkov, I. V. & Smirnov, Y. S. Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons. Phys. Rev. E 54, 5707–5725 (1996).

    Article  ADS  Google Scholar 

  22. Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

    Article  ADS  Google Scholar 

  23. Wang, P.-H. et al. Intracavity characterization of micro-comb generation in the single-soliton regime. Opt. Express 24, 10890–10897 (2016).

    Article  ADS  Google Scholar 

  24. Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

    Article  ADS  Google Scholar 

  25. Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

    Article  ADS  Google Scholar 

  26. Akhmediev, N. & Karlsson, M. Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A 51, 2602–2607 (1995).

    Article  ADS  Google Scholar 

  27. Karpov, M. et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Phys. Rev. Lett. 116, 103902 (2016).

    Article  ADS  Google Scholar 

  28. Ghelfi, P. et al. A fully photonics-based coherent radar system. Nature 507, 341–345 (2014).

    Article  ADS  Google Scholar 

  29. Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. Microresonator soliton dual-comb spectroscopy. Preprint at https://arXiv.org/abs/1607.08222 (2016).

  30. Jost, J. D. et al. Counting the cycles of light using a self-referenced optical microresonator. Optica 2, 706–711 (2015).

    Article  ADS  Google Scholar 

  31. Brasch, V., Lucas, E., Jost, J. D., Geiselmann, M. & Kippenberg, T. J. Self-referencing of an on-chip soliton Kerr frequency comb without external broadening. Preprint at https://arXiv.org/abs/1605.02801 (2016).

  32. Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photon. 6, 84–92 (2012).

    Article  ADS  Google Scholar 

  33. Coen, S., Randle, H., Sylvestre, T. & Erkintalo, M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett. 38, 37–39 (2013).

    Article  ADS  Google Scholar 

  34. Chembo, Y. & Menyuk, C. Spatiotemporal Lugiato–Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A 87, 053852 (2013).

    Article  ADS  Google Scholar 

  35. Moss, D., Morandotti, R., Gaeta, L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    Article  ADS  Google Scholar 

  36. Foster, M. A. et al. Silicon-based monolithic optical frequency comb source. Opt. Express 19, 14233–14239 (2011).

    Article  ADS  Google Scholar 

  37. Ilchenko, V. S., Savchenkov, A. A., Matsko, A. B. & Maleki, L. Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett. 92, 043903 (2004).

    Article  ADS  Google Scholar 

  38. Grudinin, I. S. et al. Ultra high Q crystalline microcavities. Opt. Commun. 265, 33–38 (2006).

    Article  ADS  Google Scholar 

  39. Liang, W. et al. Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator. Opt. Lett. 36, 2290–2292 (2011).

    Article  ADS  Google Scholar 

  40. Braginsky, V. B., Gorodetsky, M. L. & Ilchenko, V. S. Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A 137, 393–397 (1989).

    Article  ADS  Google Scholar 

  41. Carmon, T., Yang, L. & Vahala, K. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

    Article  ADS  Google Scholar 

  42. Fomin, A. E., Gorodetsky, M. L., Grudinin, I. S. & Ilchenko, V. S. Nonstationary nonlinear effects in optical microspheres. J. Opt. Soc. Am. B 22, 459–465 (2005).

    Article  ADS  Google Scholar 

  43. Lee, C.-C. & Schibli, T. R. Intrinsic power oscillations generated by the backaction of continuum on solitons and its implications on the transfer functions of a mode-locked laser. Phys. Rev. Lett. 112, 223903 (2014).

    Article  ADS  Google Scholar 

  44. Wahlstrand, J. K., Willits, J. T., Schibli, T. R., Menyuk, C. R. & Cundiff, S. T. Quantitative measurement of timing and phase dynamics in a mode-locked laser. Opt. Lett. 32, 3426–3428 (2007).

    Article  ADS  Google Scholar 

  45. Bao, C., Funk, A. C., Yang, C. & Cundiff, S. T. Pulse dynamics in a mode-locked fiber laser and its quantum limited comb frequency uncertainty. Opt. Lett. 39, 3266–3269 (2014).

    Article  ADS  Google Scholar 

  46. Matsko, A. B. & Maleki, L. Feshbach resonances in Kerr frequency combs. Phys. Rev. A 91, 013831 (2015).

    Article  ADS  Google Scholar 

  47. Gasch, A., Wedding, B. & Jager, D. Multistability and soliton modes in nonlinear microwave resonators. Appl. Phys. Lett. 44, 1105–1107 (1984).

    Article  ADS  Google Scholar 

  48. Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett. 41, 2037–2040 (2016).

    Article  ADS  Google Scholar 

  49. Pfeiffer, M. H. P. et al. Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics. Optica 3, 20–25 (2016).

    Article  ADS  Google Scholar 

  50. Herr, T. et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113, 123901 (2014).

    Article  ADS  Google Scholar 

  51. Kordts, A., Pfeiffer, M. H. P., Guo, H., Brasch, V. & Kippenberg, T. J. Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation. Opt. Lett. 41, 452–455 (2016).

    Article  ADS  Google Scholar 

  52. Del’Haye, P., Arcizet, O., Gorodetsky, M. L., Holzwarth, R. & Kippenberg, T. J. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nat. Photon. 3, 529–533 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This publication was supported by the Swiss National Science Foundation (SNF) as well as Contract W31P4Q-14-C-0050 from the Defense Advanced Research Projects Agency (DARPA), Defense Sciences Office (DSO). This material is based upon work supported by the Air Force Office of Scientific Research, Air Force Material Command, USAF under Award No. FA9550-15-1-0099. This publication was supported by funding from the European Space Agency (ESA), European Space Research and Technology Centre (ESTEC). G.L., V.E.L. and M.L.G. were supported by the Ministry of Education and Science of the Russian Federation project RFMEFI58516X0005. The authors gratefully acknowledge valuable discussions with M. Geiselmann and J. D. Jost. All samples were fabricated and grown in the Center of MicroNanoTechnology (CMi) at EPFL.

Author information

Authors and Affiliations

Authors

Contributions

M.K. designed and performed the experiments and analysed the data. H.G. conceived and initiated the numerical simulations with thermal effects. E.L. performed experiments in MgF2 microresonators and analysed the data. A.K. fabricated the Si3N4 samples and M.H.P.P. developed the fabrication method. V.B. assisted in experiments. G.L. and V.E.L. assisted in simulations. M.L.G. developed the theory and performed the simulations. M.K., H.G., E.L., M.L.G. and T.J.K. discussed all data in the manuscript. M.K. and H.G. wrote the manuscript, with input from E.L., M.L.G. and T.J.K. The project was supervised by T.J.K.

Corresponding authors

Correspondence to M. L. Gorodetsky or T. J. Kippenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 535 kb)

Supplementary Movie 1

Supplementary Movie (MOV 8281 kb)

Supplementary Figure 1

Supplementary Figure (GIF 919 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Karpov, M., Lucas, E. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nature Phys 13, 94–102 (2017). https://doi.org/10.1038/nphys3893

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3893

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing