Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct observation of the skyrmion Hall effect

Abstract

The well-known Hall effect describes the transverse deflection of charged particles (electrons/holes) as a result of the Lorentz force. Similarly, it is intriguing to examine if quasi-particles without an electric charge, but with a topological charge, show related transverse motion. Magnetic skyrmions with a well-defined spin texture with a unit topological charge serve as good candidates to test this hypothesis. In spite of the recent progress made on investigating magnetic skyrmions, direct observation of the skyrmion Hall effect has remained elusive. Here, by using a current-induced spin Hall spin torque, we experimentally demonstrate the skyrmion Hall effect, and the resultant skyrmion accumulation, by driving skyrmions from the creep-motion regime (where their dynamics are influenced by pinning defects) into the steady-flow-motion regime. The experimental observation of transverse transport of skyrmions due to topological charge may potentially create many exciting opportunities, such as topological selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of Hall effects for electronic and topological charges.
Figure 2: MOKE microscopy images of pulse current-driven skyrmion motion.
Figure 3: Phase diagram of current-driven skyrmion motion.
Figure 4: Transport features of skyrmions along the device edge.
Figure 5: Accumulation of skyrmions at the device edge.

Similar content being viewed by others

References

  1. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  ADS  Google Scholar 

  2. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  ADS  Google Scholar 

  3. Zang, J. D., Mostovoy, M., Han, J. H. & Nagaosa, N. Dynamics of skyrmion crystals in metallic thin films. Phys. Rev. Lett. 107, 136804 (2011).

    Article  ADS  Google Scholar 

  4. Braun, H. B. Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons. Adv. Phys. 61, 1–116 (2012).

    Article  ADS  Google Scholar 

  5. Lin, S. Z., Reichhardt, C., Batista, C. D. & Saxena, A. Driven skyrmions and dynamical transitions in chiral magnets. Phys. Rev. Lett. 110, 207202 (2013).

    Article  ADS  Google Scholar 

  6. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013).

    Article  ADS  Google Scholar 

  7. Everschor-Sitte, K. & Sitte, M. Real-space Berry phases: skyrmion soccer (invited). J. Appl. Phys. 115, 172602 (2014).

    Article  ADS  Google Scholar 

  8. Zhou, Y. & Ezawa, M. A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry. Nat. Commun. 5, 4652 (2014).

    Article  ADS  Google Scholar 

  9. Büttner, F. et al. Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 11, 225–228 (2015).

    Article  Google Scholar 

  10. Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012).

    Article  Google Scholar 

  11. Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).

    Article  ADS  Google Scholar 

  12. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).

    Article  Google Scholar 

  13. Thiaville, A., Rohart, S., Jue, E., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).

    Article  ADS  Google Scholar 

  14. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotech. 8, 152–156 (2013).

    Article  ADS  Google Scholar 

  15. Chen, G. et al. Novel chiral magnetic domain wall structure in Fe/Ni/Cu(001) films. Phys. Rev. Lett. 110, 177204 (2013).

    Article  ADS  Google Scholar 

  16. Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotech. 8, 839–844 (2013).

    Article  ADS  Google Scholar 

  17. Rohart, S. & Thiaville, A. Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii–Moriya interaction. Phys. Rev. B 88, 184422 (2013).

    Article  ADS  Google Scholar 

  18. Jiang, W. J. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    Article  ADS  Google Scholar 

  19. Chen, G., Mascaraque, A., N’Diaye, A. T. & Schmid, A. K. Room temperature skyrmion ground state stabilized through interlayer exchange coupling. Appl. Phys. Lett. 106, 242404 (2015).

    Article  ADS  Google Scholar 

  20. Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    Article  ADS  Google Scholar 

  21. Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotech. 11, 449–454 (2016).

    Article  ADS  Google Scholar 

  22. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotech. 11, 444–448 (2016).

    Article  ADS  Google Scholar 

  23. Yu, G. et al. Room-temperature creation and spin-orbit torque manipulation of skyrmions in thin films with engineered asymmetry. Nano Lett. 16, 1981–1988 (2016).

    Article  ADS  Google Scholar 

  24. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  ADS  Google Scholar 

  25. Liu, L. Q. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  ADS  Google Scholar 

  26. Hoffmann, A. Spin hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013).

    Article  ADS  Google Scholar 

  27. Yu, G. et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nat. Nanotech. 9, 548–554 (2014).

    Article  ADS  Google Scholar 

  28. Lin, S.-Z. Edge instability in a chiral stripe domain under an electric current and skyrmion generation. Phys. Rev. B 94, 020402(R) (2016).

    Article  ADS  Google Scholar 

  29. Thiele, A. A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230 (1973).

    Article  ADS  Google Scholar 

  30. Tomasello, R. et al. A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, 6784 (2014).

    Article  Google Scholar 

  31. Zhang, X., Zhou, Y. & Motohiko, E. Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat. Commun. 7, 10293 (2016).

    Article  ADS  Google Scholar 

  32. Jonietz, F. et al. Spin transfer torques in MnSi at ultralow current densities. Science 330, 1648–1651 (2010).

    Article  ADS  Google Scholar 

  33. Müller, J. & Rosch, A. Capturing of a magnetic skyrmion with a hole. Phys. Rev. B 91, 054410 (2015).

    Article  ADS  Google Scholar 

  34. Reichhardt, C., Ray, D. & Reichhardt, C. J. O. Collective transport properties of driven skyrmions with random disorder. Phys. Rev. Lett. 114, 217202 (2015).

    Article  ADS  Google Scholar 

  35. Reichhardt, C. & Reichhardt, C. J. O. Drive dependence of the skyrmion Hall effect in disordered systems. Preprint at https://arXiv.org/abs/1605.01427 (2016).

  36. Makhfudz, I., Krüger, B. & Tchernyshyov, O. Inertia and chiral edge modes of a skyrmion magnetic bubble. Phys. Rev. Lett. 109, 217201 (2012).

    Article  ADS  Google Scholar 

  37. Heinonen, O., Jiang, W., Somaily, H., te Velthuis, S. G. E. & Hoffmann, A. Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents. Phys. Rev. B 93, 094407 (2016).

    Article  ADS  Google Scholar 

  38. Malozemoff, A. P. Mobility of bubbles with small numbers of Bloch lines. J. Appl. Phys. 44, 5080 (1973).

    Article  ADS  Google Scholar 

  39. Malozemoff, A. P. & Slonczewski, J. C. Magnetic Domain Walls in Bubble Materials (Academic Press, 1979).

    Google Scholar 

  40. Emori, S., Bauer, U., Ahn, S. M., Martinez, E. & Beach, G. S. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    Article  ADS  Google Scholar 

  41. Hrabec, A. et al. Measuring and tailoring the Dzyaloshinskii–Moriya interaction in perpendicularly magnetized thin films. Phys. Rev. B 90, 0204402(R) (2014).

    Article  Google Scholar 

  42. Reichhardt, C., Ray, D. & Reichhardt, C. J. O. Quantized transport for a skyrmion moving on a two-dimensional periodic substrate. Phys. Rev. B 91, 104426 (2015).

    Article  ADS  Google Scholar 

  43. Lin, S. Z., Reichhardt, C., Batista, C. D. & Saxena, A. Particle model for skyrmions in metallic chiral magnets: dynamics, pinning, and creep. Phys. Rev. B 87, 214419 (2013).

    Article  ADS  Google Scholar 

  44. Meynell, S. A., Wilson, M. N., Fritzsche, H., Bogdanov, A. N. & Monchesky, T. L. Surface twist instabilities and skyrmion states in chiral ferromagnets. Phys. Rev. B 90, 014406 (2014).

    Article  ADS  Google Scholar 

  45. Iwasaki, J., Koshibae, W. & Nagaosa, N. Colossal spin transfer torque effect on skyrmion along the edge. Nano Lett. 14, 4432–4437 (2014).

    Article  ADS  Google Scholar 

  46. Neubauer, A. et al. Topological Hall effect in the a phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

    Article  ADS  Google Scholar 

  47. Vélez, M. et al. Superconducting vortex pinning with artificial magnetic nanostructures. J. Magn. Magn. Mater. 320, 2547–2562 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Work carried out at the Argonne National Laboratory including lithographic processing and MOKE imaging was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Lithography was carried out at the Center for Nanoscale Materials, which is supported by the DOE, Office of Science, Basic Energy Sciences under Contract No. DE-AC02-06CH11357. W.J. was partially supported by the 1000-Youth Talent Program of China, and National Key Research Plan of China under contract number 2016YFA0302300. Thin film growth performed at UCLA was partially supported by the NSF Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems (TANMS). Y.Z. acknowledges support by the National Natural Science Foundation of China (Project No. 1157040329), Shenzhen Fundamental Research Fund under Grant No. JCYJ20160331164412545. X.Z. was supported by JSPS RONPAKU (Dissertation Ph.D.) Program. Work at Bryn Mawr College is supported by NSF CAREER award (No. 1053854). The authors wish to thank C. Reichhardt for insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

W.J., A.H. and S.G.E.t.V. conceived and designed the experiments. G.Y. and K.L.W. fabricated the thin film. W.J., W.Z., X.W., M.B.J. and J.E.P., performed lithographic processing. X.Z., Y.Z. and O.H. performed micromagnetic simulation. W.J., X.W. and X.C. performed MOKE experiments and data analysis. W.J., A.H. and S.G.E.t.V. wrote the manuscript. All authors commented on the manuscript.

Corresponding authors

Correspondence to Wanjun Jiang, Axel Hoffmann or Suzanne G. E. te Velthuis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6661 kb)

Supplementary Movie 1

Supplementary Movie (AVI 3623 kb)

Supplementary Movie 2

Supplementary Movie (AVI 1229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Zhang, X., Yu, G. et al. Direct observation of the skyrmion Hall effect. Nature Phys 13, 162–169 (2017). https://doi.org/10.1038/nphys3883

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3883

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing