Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanotextured phase coexistence in the correlated insulator V2O3

Abstract

The insulator–metal transition remains among the most studied phenomena in correlated electron physics. However, the spontaneous formation of spatial patterns amidst insulator–metal phase coexistence remains poorly explored on the meso- and nanoscales. Here we present real-space evolution of the insulator–metal transition in a V2O3 thin film imaged at high spatial resolution by cryogenic near-field infrared microscopy. We resolve spontaneously nanotextured coexistence of metal and correlated Mott insulator phases near the insulator–metal transition (160–180 K) associated with percolation and an underlying structural phase transition. Augmented with macroscopic temperature-resolved X-ray diffraction measurements of the same film, a quantitative analysis of nano-infrared images acquired across the transition suggests decoupling of electronic and structural transformations. Persistent low-temperature metallicity is accompanied by unconventional critical behaviour, implicating the long-range Coulomb interaction as a driving force through the film’s first-order insulator–metal transition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nano-IR imaging of the insulator–metal transition in V2O3.
Figure 2: Bimodal analysis of phase distributions in V2O3.
Figure 3: Phase diagram for electronic and structural phases in thin-film V2O3.
Figure 4: Composite phenomena amidst the insulator–metal transition in V2O3.

Similar content being viewed by others

References

  1. Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

    Article  ADS  Google Scholar 

  2. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

    Article  ADS  Google Scholar 

  3. Lawler, M. J. et al. Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature 466, 347–351 (2010).

    Article  ADS  Google Scholar 

  4. Uehara, M., Mori, S., Chen, C. H. & Cheong, S. W. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560–563 (1999).

    Article  ADS  Google Scholar 

  5. Ahn, K. H., Lookman, T. & Bishop, A. R. Strain-induced metal–insulator phase coexistence in perovskite manganites. Nature 428, 401–404 (2004).

    Article  ADS  Google Scholar 

  6. Lai, K. et al. Mesoscopic percolating resistance network in a strained manganite thin film. Science 329, 190–193 (2010).

    Article  ADS  Google Scholar 

  7. Seul, M. & Andelman, D. Domain shapes and patterns: the phenomenology of modulated phases. Science 267, 476–483 (1995).

    Article  ADS  Google Scholar 

  8. Knoll, B. & Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999).

    Article  ADS  Google Scholar 

  9. Frandsen, B. A. et al. Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning. Nat. Commun. 7, 12519 (2016).

    Article  ADS  Google Scholar 

  10. Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998).

    Article  ADS  Google Scholar 

  11. Rozenberg, M. J. et al. Optical conductivity in Mott–Hubbard systems. Phys. Rev. Lett. 75, 105 (1995).

    Article  ADS  Google Scholar 

  12. Stewart, M. K. et al. Insulator-to-metal transition and correlated metallic state of V2O3 investigated by optical spectroscopy. Phys. Rev. B 85, 205113 (2012).

    Article  ADS  Google Scholar 

  13. Lupi, S. et al. A microscopic view on the Mott transition in chromium-doped V2O3 . Nat. Commun. 1, 105 (2010).

    Article  ADS  Google Scholar 

  14. Ding, Y. et al. Novel high-pressure monoclinic metallic phase of V2O3 . Phys. Rev. Lett. 112, 056401 (2014).

    Article  ADS  Google Scholar 

  15. Liu, M. K. et al. Anisotropic electronic state via spontaneous phase separation in strained vanadium dioxide films. Phys. Rev. Lett. 111, 096602 (2013).

    Article  ADS  Google Scholar 

  16. Kim, B.-J. et al. Micrometer X-ray diffraction study of VO2 films: separation between metal–insulator transition and structural phase transition. Phys. Rev. B 77, 235401 (2008).

    Article  ADS  Google Scholar 

  17. Limelette, P. et al. Universality and critical behavior at the Mott transition. Science 302, 89–92 (2003).

    Article  ADS  Google Scholar 

  18. Guénon, S. et al. Electrical breakdown in a V2O3 device at the insulator-to-metal transition. Europhys. Lett. 101, 57003 (2013).

    Article  ADS  Google Scholar 

  19. Gebhard, F. The Mott Metal–Insulator Transition: Models and Methods (Springer Tracts in Modern Physics 137, Springer, 1997).

    Google Scholar 

  20. Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007).

    Article  ADS  Google Scholar 

  21. Atkin, J. M., Berweger, S., Jones, A. C. & Raschke, M. B. Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids. Adv. Phys. 61, 745–842 (2012).

    Article  ADS  Google Scholar 

  22. Muratov, C. B. Theory of domain patterns in systems with long-range interactions of Coulomb type. Phys. Rev. E 66, 066108 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  23. Ortix, C., Lorenzana, J. & Di Castro, C. Universality classes for Coulomb frustrated phase separation. Physica B 404, 499–502 (2009).

    Article  ADS  Google Scholar 

  24. Macridin, A., Jarell, M. & Maier, T. Phase separation in the Hubbard model using the dynamical cluster approximation. Phys. Rev. B 74, 085104 (2006).

    Article  ADS  Google Scholar 

  25. Yee, C.-H. & Balents, L. Phase separation in doped Mott insulators. Phys. Rev. X 5, 021007 (2015).

    Google Scholar 

  26. Baldassarre, L. et al. Quasiparticle evolution and pseudogap formation in V2O3: an infrared spectroscopy study. Phys. Rev. B 77, 113107 (2008).

    Article  ADS  Google Scholar 

  27. Georges, A., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  28. Park, H., Haule, K. & Kotliar, G. Cluster dynamical mean field theory of the Mott transition. Phys. Rev. Lett. 101, 186403 (2008).

    Article  ADS  Google Scholar 

  29. He, Z. & Millis, A. J. Photoinduced phase transitions in narrow-gap Mott insulators: the case of VO2 . Phys. Rev. B 93, 115126 (2016).

    Article  ADS  Google Scholar 

  30. Tselev, A. et al. Interplay between ferroelastic and metal–insulator phase transitions in strained quasi-two-dimensional VO2 nanoplatelets. Nano Lett. 10, 2003–2011 (2010).

    Article  ADS  Google Scholar 

  31. Laverock, J. et al. Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO2 . Phys. Rev. Lett. 113, 216402 (2014).

    Article  ADS  Google Scholar 

  32. Roytburd, A. L. Thermodynamics of polydomain heterostructures. I. Effect of macrostresses. Appl. Phys. Lett. 83, 228–238 (1998).

    Google Scholar 

  33. Gao, Y. F., Lu, W. & Suo, Z. A mesophase transition in a binary monolayer on a solid surface. Acta Mater. 50, 2297–2308 (2002).

    Article  Google Scholar 

  34. Bratkovsky, A. M., Marais, S. C., Heine, V. & Salje, E. K. H. The theory of fluctuations and texture embryos in structural phase transitions mediated by strain. J. Phys. Condens. Matter 6, 3679–3696 (1994).

    Article  ADS  Google Scholar 

  35. Cao, J. et al. Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams. Nat. Nanotech. 4, 732–737 (2009).

    Article  ADS  Google Scholar 

  36. Chitra, R. & Kotliar, G. Effect of long range Coulomb interactions on the Mott transition. Phys. Rev. Lett. 84, 3678–3681 (2000).

    Article  ADS  Google Scholar 

  37. Kadanoff, L. P. et al. Static phenomena near critical points: theory and experiment. Rev. Mod. Phys. 39, 395–431 (1967).

    Article  ADS  Google Scholar 

  38. Shuo, L. et al. Random field driven spatial complexity at the Mott transition in VO2 . Phys. Rev. Lett. 116, 036401 (2016).

    Article  Google Scholar 

  39. Abreu, E. et al. Dynamic conductivity scaling in photoexcited V2O3 thin films. Phys. Rev. B 92, 085130 (2015).

    Article  ADS  Google Scholar 

  40. Spivak, B. & Kivelson, S. A. Transport in two dimensional electronic micro-emulsions. Ann. Phys. 321, 2071–2115 (2006).

    Article  ADS  Google Scholar 

  41. Ramirez, J.-G., Sharoni, A., Dubi, Y., Gomez, M. E. & Schuller, I. K. First-order reversal curve measurements of the metal-insulator transition in VO2: signatures of persistent metallic domains. Phys. Rev. B 79, 235110 (2009).

    Article  ADS  Google Scholar 

  42. Baum, P., Yang, D.-S. & Zewail, A. H. 4D visualization of transitional structures in phase transformations by electron diffraction. Science 318, 788–792 (2007).

    Article  ADS  Google Scholar 

  43. Arcangeletti, E. et al. Evidence of a pressure-induced metallization process in monoclinic VO2 . Phys. Rev. Lett. 98, 196406 (2007).

    Article  ADS  Google Scholar 

  44. Potthoff, M. & Nolting, W. Metallic surface of a Mott insulator–Mott insulating surface of a metal. Phys. Rev. B 60, 7834 (1999).

    Article  ADS  Google Scholar 

  45. Rodolakis, F. et al. Inequivalent routes across the Mott transition in V2O3 explored by X-ray absorption. Phys. Rev. Lett. 104, 047401 (2010).

    Article  ADS  Google Scholar 

  46. Podzorov, V., Kim, B. G., Kiryukhin, V., Gershenson, M. E. & Cheong, S.-W. Martensitic accommodation strain and the metal-insulator transition in manganites. Phys. Rev. B 64, 140406 (2001).

    Article  ADS  Google Scholar 

  47. Sakai, R., Limelette, P. & Funakubo, H. Transport properties and c/a ratio of V2O3 thin films grown on C- and R-plane sapphire substrates by pulsed laser deposition. Appl. Phys. Lett. 107, 241901 (2015).

    Article  ADS  Google Scholar 

  48. Aetukuri, N. B. et al. Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy. Nat. Phys. 9, 661–666 (2013).

    Article  Google Scholar 

  49. Yang, H. U., Hevestreit, E., Josberger, E. E. & Raschke, M. B. A cryogenic scattering-type scanning near-field optical microscope. Rev. Sci. Instrum. 84, 023701 (2013).

    Article  ADS  Google Scholar 

  50. Hillenbrand, R. & Keilmann, F. Complex optical constants on a subwavelength scale. Phys. Rev. Lett. 85, 3029–3032 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.S.M., E.v.H., M.G., L.A., P.K., A.M., M.K.L. and D.N.B. were supported by DOE-DE-SC0012375 and DOE-DE-SC0012592. J.G.R., S.W., T.S., S.G. and I.K.S. were supported by AFOSR Grant No. FA9550-12-1-0381. A.S.M. acknowledges support from a US Department of Energy Office of Science Graduate Fellowship (SCGF). Development of methods for cryogenic nano-infrared imaging is supported by ARO-w911NF-13-1-0210 and ONR-N00014-15-1-2671. D.N.B. is the Gordon and Betty Moore Foundation’s Investigator in Quantum Materials award under the EPiQS Initiative through Grant GBMF4533. E.v.H. acknowledges the support of the US National Science Foundation I2CAM International Materials Institute Award, Grant DMR-0844115.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were conceived jointly by all authors. S.W. and J.G.R. grew the V2O3 film. A.S.M. and E.v.H. performed nano-IR measurements on the film, while J.G.R. and T.S. performed ex situ X-ray diffraction and resistance measurements. A.S.M., E.v.H., M.G., L.A. and P.K. developed the nano-IR instrumentation. All authors prepared the manuscript.

Corresponding author

Correspondence to A. S. McLeod.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 15561 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLeod, A., van Heumen, E., Ramirez, J. et al. Nanotextured phase coexistence in the correlated insulator V2O3. Nature Phys 13, 80–86 (2017). https://doi.org/10.1038/nphys3882

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3882

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing