Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnetotail energy dissipation during an auroral substorm

Abstract

Violent releases of space plasma energy from the Earth’s magnetotail during substorms produce strong electric currents and bright aurora. But what modulates these currents and aurora and controls dissipation of the energy released in the ionosphere? Using data from the THEMIS fleet of satellites and ground-based imagers and magnetometers, we show that plasma energy dissipation is controlled by field-aligned currents (FACs) produced and modulated during magnetotail topology change and oscillatory braking of fast plasma jets at 10–14 Earth radii in the nightside magnetosphere. FACs appear in regions where plasma sheet pressure and flux tube volume gradients are non-collinear. Faster tailward expansion of magnetotail dipolarization and subsequent slower inner plasma sheet restretching during substorm expansion and recovery phases cause faster poleward then slower equatorward movement of the substorm aurora. Anharmonic radial plasma oscillations build up displaced current filaments and are responsible for discrete longitudinal auroral arcs that move equatorward at a velocity of about 1 km s−1. This observed auroral activity appears sufficient to dissipate the released energy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ground observations of aurora and electric currents.
Figure 2: AM-03 model predictions of the magnetotail development near THEMIS probes.
Figure 3: Overview of substorm parameters during substorm expansion and recovery phases.
Figure 4: THEMIS space and ground observations on 23 March 2009 between 6:16 UT and 6:36 UT.
Figure 5: Theoretical predictions for THEMIS observations on 23 March 2009 around 6:21 UT.

Similar content being viewed by others

References

  1. McPherron, R. L. Magnetospheric substorms. Rev. Geophys. Space Phys. 17, 657–681 (1979).

    Article  ADS  Google Scholar 

  2. Akasofu, S.-I. Auroral substorms as an electrical discharge phenomenon. Prog. Earth Planet. Sci. 2, 1–21 (2015).

    Article  Google Scholar 

  3. Angelopoulos, V. et al. Tail reconnection triggering substorm onset. Science 321, 931–935 (2008).

    Article  ADS  Google Scholar 

  4. Baumjohann, W., Paschmann, G. & Luehr, H. Characteristics of high-speed ion flows in the plasma sheet. J. Geophys. Res. 95, 3801–3809 (1990).

    Article  ADS  Google Scholar 

  5. Angelopoulos, V. et al. Statistical characteristics of bursty bulk flow events. J. Geophys. Res. 99, 21257–21280 (1994).

    Article  ADS  Google Scholar 

  6. Angelopoulos, V. et al. Electromagnetic energy conversion at reconnection fronts. Science 341, 1478–1482 (2013).

    Article  ADS  Google Scholar 

  7. Drake, J. F., Swisdak, M., Cassak, P. A. & Phan, T. D. On the 3-D structure and dissipation of reconnection-driven flow bursts. Geophys. Res. Lett. 41, 3710–3716 (2014).

    Article  ADS  Google Scholar 

  8. Nakamura, R. et al. Earthward flow bursts, auroral streamers, and small expansions. J. Geophys. Res. 106, 10791–10802 (2001).

    Article  ADS  Google Scholar 

  9. Pontius, D. H. Jr & Wolf, R. A. Transient flux tubes in the terrestrial magnetosphere. Geophys. Res. Lett. 17, 49–52 (1990).

    Article  ADS  Google Scholar 

  10. Baumjohann, W. Modes of convection in the magnetotail. Phys. Plasmas 9, 3665–3667 (2002).

    Article  ADS  Google Scholar 

  11. Nakamura, R. et al. Plasma flow and magnetic field characteristics near the midtail neutral sheet. J. Geophys. Res. 99, 23591–23601 (1994).

    Article  ADS  Google Scholar 

  12. Schödel, R., Nakamura, R., Baumjohann, W. & Mukai, T. Rapid flux transport and plasma sheet reconfiguration. J. Geophys. Res. 106, 8381–8390 (2001).

    Article  ADS  Google Scholar 

  13. Baumjohann, W. et al. Substorm dipolarization and recovery. J. Geophys. Res. 104, 24995–25000 (1999).

    Article  ADS  Google Scholar 

  14. Birn, J., Nakamura, R., Panov, E. V. & Hesse, M. Bursty bulk flows and dipolarization in MHD simulations of magnetotail reconnection. J. Geophys. Res. 116, A01210 (2011).

    Article  ADS  Google Scholar 

  15. Wolf, R. A., Chen, C. X. & Toffoletto, F. R. Thin filament simulations for Earth’s plasma sheet: interchange oscillations. J. Geophys. Res. 117, A02215 (2012).

    ADS  Google Scholar 

  16. Panov, E. V. et al. Oscillatory flow braking in the magnetotail: THEMIS statistics. Geophys. Res. Lett. 40, 2505–2510 (2013).

    Article  ADS  Google Scholar 

  17. Sergeev, V. A., Chernyaev, I. A., Angelopoulos, V., Runov, A. V. & Nakamura, R. Stopping flow bursts and their role in the generation of the substorm current wedge. Geophys. Res. Lett. 41, 1106–1112 (2014).

    Article  ADS  Google Scholar 

  18. Birn, J., Hesse, M., Haerendel, G., Baumjohann, W. & Shiokawa, K. Flow braking and the substorm current wedge. J. Geophys. Res. 104, 19895–19904 (1999).

    Article  ADS  Google Scholar 

  19. Kepko, L. et al. Substorm current wedge revisited. Space Sci. Rev. 190, 1–46 (2015).

    Article  ADS  Google Scholar 

  20. Angelopoulos, V. The THEMIS mission. Space Sci. Rev. 141, 5–34 (2008).

    Article  ADS  Google Scholar 

  21. Auster, H. U. et al. The THEMIS fluxgate magnetometer. Space Sci. Rev. 141, 235–264 (2008).

    Article  ADS  Google Scholar 

  22. McFadden, J. P. et al. The THEMIS ESA plasma instrument and in-flight calibration. Space Sci. Rev. 141, 277–302 (2008).

    Article  ADS  Google Scholar 

  23. Mende, S. B. et al. The THEMIS array of ground-based observatories for the study of auroral substorms. Space Sci. Rev. 141, 357–387 (2008).

    Article  ADS  Google Scholar 

  24. Mann, I. R. et al. The upgraded CARISMA magnetometer array in the THEMIS era. Space Sci. Rev. 141, 413–451 (2008).

    Article  ADS  Google Scholar 

  25. Weygand, J. M. et al. Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays. J. Geophys. Res. 116, A03305 (2011).

    Article  ADS  Google Scholar 

  26. Barron, J., Fleet, D. J. & Beauchemin, S. S. Performance of optical flow techniques. Int. J. Comput. Vis. 12, 43–77 (1994).

    Article  Google Scholar 

  27. Amm, O. & Kauristie, K. Ionospheric signatures of bursty bulk flows. Surv. Geophys. 23, 1–32 (2002).

    Article  ADS  Google Scholar 

  28. Hsieh, M.-S. & Otto, A. Thin current sheet formation in response to the loading and the depletion of magnetic flux during the substorm growth phase. J. Geophys. Res. 120, 4264–4278 (2015).

    Article  Google Scholar 

  29. Kubyshkina, M. et al. Time-dependent magnetospheric configuration and breakup mapping during a substorm. J. Geophys. Res. 116, A00I27 (2011).

    Article  Google Scholar 

  30. Vasyliunas, V. M. in Particles and Field in the Magnetosphere Vol. 17 (eds McCormack, B. M. & Renzini, A.) 60–71 (Astrophysics and Space Science Library, 1970).

    Book  Google Scholar 

  31. Wolf, R. A. et al. Estimating local plasma sheet PV5/3 from single-spacecraft measurements. J. Geophys. Res. 111, A12218 (2006).

    Article  ADS  Google Scholar 

  32. Panov, E. V., Wolf, R. A., Kubyshkina, M., Baumjohann, W. & Nakamura, R. Anharmonic oscillatory flow braking in the Earth’s magnetotail. Geophys. Res. Lett. 42, 3700–3706 (2015).

    Article  ADS  Google Scholar 

  33. Angelopoulos, V. et al. Multipoint analysis of a bursty bulk flow event on April 11, 1985. J. Geophys. Res. 101, 4967–4989 (1996).

    Article  ADS  Google Scholar 

  34. Miyashita, Y. et al. A statistical study of energy release and transport midway between the magnetic reconnection and initial dipolarization regions in the near-Earth magnetotail associated with substorm expansion onsets. J. Geophys. Res. 117, A11214 (2012).

    Article  ADS  Google Scholar 

  35. Baumjohann, W. & Kamide, Y. Hemispherical Joule heating and the AE indices. J. Geophys. Res. 89, 383–388 (1984).

    Article  ADS  Google Scholar 

  36. Hardy, D. A., Gussenhoven, M. S. & Holeman, E. A statistical model of auroral electron precipitation. J. Geophys. Res. 90, 4229–4248 (1985).

    Article  ADS  Google Scholar 

  37. Haerendel, G. Poleward arcs of the auroral oval during substorms and the inner edge of the plasma sheet. J. Geophys, Res. 114, A06214 (2009).

    Article  ADS  Google Scholar 

  38. Robinson, R. M., Vondrak, R. R., Miller, K., Dabbs, T. & Hardy, D. On calculating ionospheric conductances from the flux and energy of precipitating electrons. J. Geophys. Res. 92, 2565–2569 (1987).

    Article  ADS  Google Scholar 

  39. Gjerloev, J. W. & Hoffman, R. A. Height-integrated conductivity in auroral substorms. 1. Data. J. Geophys. Res. 105, 215–226 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge NASA contract NAS5-02099 for use of data from the THEMIS Mission and, specifically, for the use of FGM data supported through the German Ministry for Economy and Technology and the German Center for Aviation and Space (DLR) under contract 50 OC 0302. For the GBO/ASIs, we acknowledge S. Mende and E. Donovan, NASA contract NAS5-02099 and the CSA for logistical support in fielding and data retrieval from the GBO stations. The authors gratefully acknowledge AUTUMN, CANMOS, CARISMA, DTU, GIMA, MACCS, McMAC, STEP, THEMIS and USGS for the use of ground-based magnetic field data over Greenland and North America. The work of M.V.K. was supported by RFBR grant 16-05-00470. The work of E.V.P. and R.N. was partly supported by the Austrian Science Fund (FWF) I2016-N20 and by the Seventh Framework European Commission Programme (FP7, project 269198 Geoplasmas). The authors thank O. Amm for helping with ionospheric currents calculations, J. Hohl for helping with editing, and K.-H. Glaßmeier, O. Panova, A. A. Petrukovich, V. A. Sergeev and F. R. Toffoletto for insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

E.V.P. developed the research and did the main part of the data analysis; R.A.W. applied analytical thin filament calculations; W.B. and R.A.W. provided theoretical insight into interpretation of the observational data; R.N. and V.A. contributed to the data interpretation and manuscript preparation; J.M.W. applied the spherical elementary currents (SECSs) method to the ground magnetometer data; M.V.K. applied the AM-03 model to THEMIS data and traced THEMIS probes’ ionospheric footprints; E.V.P. wrote the manuscript, with revisions provided by V.A., W.B., R.N. and R.A.W.; all authors contributed to the discussion of the results and manuscript.

Corresponding author

Correspondence to E. V. Panov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 615 kb)

Supplementary Movie 1

Supplementary Movie (MP4 4206 kb)

Supplementary Movie 2

Supplementary Movie (MP4 4054 kb)

Supplementary Movie 3

Supplementary Movie (MP4 400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panov, E., Baumjohann, W., Wolf, R. et al. Magnetotail energy dissipation during an auroral substorm. Nature Phys 12, 1158–1163 (2016). https://doi.org/10.1038/nphys3879

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3879

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing