Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators

Abstract

Building a scalable quantum processor requires coherent control and preservation of quantum coherence in a large-scale quantum system. Mesoscopic solid-state systems such as Josephson junctions and quantum dots feature robust control techniques using local electrical signals and self-evident scaling; however, in general the quantum states decohere rapidly. In contrast, quantum optical systems based on trapped ions and neutral atoms exhibit much better coherence properties, but their miniaturization and integration with electrical circuits remains a challenge. Here we describe methods for the integration of a single-particle system—an isolated polar molecule—with mesoscopic solid-state devices in a way that produces robust, coherent, quantum-level control. Our setup provides a scalable cavity-QED-type quantum computer architecture, where entanglement of distant qubits stored in long-lived rotational molecular states is achieved via exchange of microwave photons.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The structure of selected rotational states of CaBr in an electric field.
Figure 2: Electrostatic Z-trap.
Figure 3: Resonator-enhanced sideband cooling and quantum state readout.
Figure 4: Capacitive coupling of molecules mediated by a stripline.

References

  1. 1

    Special issue on ultracold polar molecules: Formation and collisions. Eur. Phys. J. D 31, 149–444 (2004).

  2. 2

    Loss, D. & DiVincenzo, D.P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    ADS  Article  Google Scholar 

  3. 3

    Wallraff, A. et al. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005).

    ADS  Article  Google Scholar 

  4. 4

    Makhlin, Y., Schön, G. & Shnirmam, A. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001).

    ADS  Article  Google Scholar 

  5. 5

    Nakamura, Y., Pashkin, Y. & Tsai, J. Coherent control of macroscopic quantum states in a single-cooper-pair box. Nature 398, 786–788 (1999).

    ADS  Article  Google Scholar 

  6. 6

    Folman, R., Krüger, P., Schmiedmayer, J., Denschlag, J. & Henkel, C. Microscopic atom optics: From wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263–273 (2002).

    ADS  Article  Google Scholar 

  7. 7

    Mandel, O. et al. Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937–940 (2003).

    ADS  Article  Google Scholar 

  8. 8

    Cirac, J. I. & Zoller, P. New frontiers in quantum information with atoms and ions. Phys. Today 57, 38–39 (2004).

    Article  Google Scholar 

  9. 9

    Leibfried, D. et al. Creation of a six-atom ‘Schrodinger cat’ state. Nature 438, 639–642 (2005).

    ADS  Article  Google Scholar 

  10. 10

    Häffner, H. et al. Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005).

    ADS  Article  Google Scholar 

  11. 11

    DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).

    ADS  Article  Google Scholar 

  12. 12

    Sørensen, A. S., van der Wal, C. H., Childress, L. I. & Lukin, M. D. Capacitive coupling of atomic systems to mesoscopic conductors. Phys. Rev. Lett. 92, 063601 (2004).

    ADS  Article  Google Scholar 

  13. 13

    Bethlem, H. L. et al. Electrostatic trapping of ammonia molecules. Nature 406, 491–494 (2000).

    ADS  Article  Google Scholar 

  14. 14

    Rieger, T., Junglen, T., Rangwala, S. A., Pinkse, P. W. H. & Rempe, G. Continuous loading of an electrostatic trap for polar molecules. Phys. Rev. Lett. 95, 173002 (2005).

    ADS  Article  Google Scholar 

  15. 15

    Xia, Y., Deng, L. & Yin, J. Electrostatic guiding of cold polar molecules on a chip. Appl. Phys. B 81, 459–464 (2005).

    ADS  Article  Google Scholar 

  16. 16

    Egorov, D., Lahaye, T., Schöllkopf, W., Friedrich, B. & Doyle, J. M. Buffer-gas cooling of atomic and molecular beams. Phys. Rev. A 66, 043401 (2002).

    ADS  Article  Google Scholar 

  17. 17

    Weinstein, J. D., deCarvalho, R., Hancox, C. I. & Doyle, J. M. Evaporative cooling of atomic chromium. Phys. Rev. A 65, 021604 (2002).

    ADS  Article  Google Scholar 

  18. 18

    DeMille, D., Glenn, D. & Petricka, J. Microwave traps for cold polar molecules. Eur. Phys. J. D 31, 375–384 (2004).

    ADS  Article  Google Scholar 

  19. 19

    Masuhara, N. et al. Evaporative cooling of spin-polarized atomic hydrogen. Phys. Rev. Lett. 61, 935–938 (1988).

    ADS  Article  Google Scholar 

  20. 20

    Vuletic, V., Chan, H. W. & Black, A. T. Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering. Phys. Rev. A 64, 033405 (2001).

    ADS  Article  Google Scholar 

  21. 21

    Bochinski, J., Hudson, E. R., Lewandowski, H., Meijer, G. & Ye, J. Phase space manipulation of cold free radical OH molecules. Phys. Rev. Lett. 91, 243001 (2003).

    ADS  Article  Google Scholar 

  22. 22

    Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    ADS  Article  Google Scholar 

  23. 23

    Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).

    ADS  Article  Google Scholar 

  24. 24

    Scully, M. & Zubairy, M. S. Quantum Optics (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  25. 25

    Day, P. K. et al. A broadband superconducting detector suitable for use in large arrays. Nature 425, 817–821 (2003).

    ADS  Article  Google Scholar 

  26. 26

    Frunzio, L., Wallraff, A., Schuster, D., Majer, J. & Schoelkopf, R. Fabrication and characterization of superconducting circuit QED devices for quantum computation. IEEE Trans. Appl. Supercond. 15, 860–863 (2005).

    ADS  Article  Google Scholar 

  27. 27

    Raimond, J. M. et al. Probing a quantum field in a photon box. J. Phys. B 38, S535–S550 (2005).

    Article  Google Scholar 

  28. 28

    Miller, R. et al. Trapped atoms in cavity QED: Coupling quantized light and matter. J. Phys. B 38, S551–S565 (2005).

    Article  Google Scholar 

  29. 29

    Wineland, D. J. & Itano, W. M. Laser cooling of atoms. Phys. Rev. A 20, 1521–1540 (1979).

    ADS  Article  Google Scholar 

  30. 30

    Deslauriers, L. et al. Zero-point cooling and low heating of trapped 111Cd+ ions. Phys. Rev. A 70, 043408 (2004).

    ADS  Article  Google Scholar 

  31. 31

    Zorin, A. et al. Background charge noise in metallic single-electron tunneling devices. Phys. Rev. B 53, 13682–13687 (1996).

    ADS  Article  Google Scholar 

  32. 32

    Turchette, Q. A. et al. Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (2000).

    ADS  Article  Google Scholar 

  33. 33

    Astafiev, O., Pashkin, Y. A., Nakamura, Y., Yamamoto, T. & Tsai, J. Quantum noise in the Josephson charge qubit. Phys. Rev. Lett. 93, 267007 (2004).

    ADS  Article  Google Scholar 

  34. 34

    Schriefl, J., Makhlin, Y., Shnirman, A. & Schoen, G. Decoherence from ensembles of two-level fluctuators. New J. Phys. 8, 001 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  35. 35

    Cirac, J. I. & Zoller, P. Quantum computation with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).

    ADS  Article  Google Scholar 

  36. 36

    Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).

    ADS  Article  Google Scholar 

  37. 37

    Steane, A. Overhead and noise threshold of fault-tolerant quantum error correction. Phys. Rev. A 68, 042322 (2003).

    ADS  Article  Google Scholar 

  38. 38

    Rabl, P. et al. Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. Phys. Rev. Lett. 97, 033003 (2006).

    ADS  Article  Google Scholar 

  39. 39

    Lukin, M. D. Colloquium: Trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75, 457–472 (2003).

    ADS  Article  Google Scholar 

  40. 40

    Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, New York, 1999).

    Google Scholar 

  41. 41

    Troppmann, U., Tesch, C. M. & de Vivie-Riedle, R. Preparation and addressability of molecular vibrational qubit states in the presence of anharmonic resonance. Chem. Phys. Lett. 378, 273–280 (2003).

    ADS  Article  Google Scholar 

  42. 42

    Babikov, D. Accuracy of gates in a quantum computer based on vibrational eigenstates. J. Chem. Phys. 121, 7577–7585 (2004).

    ADS  Article  Google Scholar 

  43. 43

    Yelin, S. F., Kirby, K. & Côté, R. Schemes for robust quantum computation with polar molecules. Preprint at <http://xxx.lanl.gov/abs/quant-ph/0602030> (2006).

  44. 44

    Cirac, J. I., Blatt, R., Zoller, P. & Phillips, W. D. Laser cooling of trapped ions in a standing wave. Phys. Rev. A 46, 2668–2681 (1992).

    ADS  Article  Google Scholar 

  45. 45

    Lin, Y., Teper, I., Chin, C. & Vuletic, V. Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces. Phys. Rev. Lett. 92, 050404 (2004).

    ADS  Article  Google Scholar 

  46. 46

    Brown, J. M. & Carrington, A. Rotational Spectroscopy of Diatomic Molecules (Cambridge Univ. Press, New York, 2003).

    Google Scholar 

  47. 47

    Childs, W. J., Cok, D. R., Goodman, G. L. & Goodman, L. S. Hyperfine and spinrotational structure of CaBr X 2Σ(v=0) by molecular-beam laser-rf double resonance. J. Chem. Phys. 75, 501–507 (1981).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank T. Calarco, L. Childress, A. Sorensen and J. Taylor for helpful discussions. Work at Harvard is supported by NSF, Harvard-MIT CUA and Packard and Sloan Foundations. Work at Yale is supported by NSF Grant DMR0325580, the W.M. Keck Foundation and the Army Research Office. Work at Innsbruck is supported by the Austrian Science Foundation, European Networks and the Institute for Quantum Information. J.M.D. would like to thank the Humboldt Foundation and G. Meijer for their support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. D. Lukin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

André, A., DeMille, D., Doyle, J. et al. A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators. Nature Phys 2, 636–642 (2006). https://doi.org/10.1038/nphys386

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing