Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The physics of spreading processes in multilayer networks

An Author Correction to this article was published on 23 February 2018

This article has been updated

Abstract

Despite the success of traditional network analysis, standard networks provide a limited representation of complex systems, which often include different types of relationships (or ‘multiplexity’) between their components. Such structural complexity has a significant effect on both dynamics and function. Throwing away or aggregating available structural information can generate misleading results and be a major obstacle towards attempts to understand complex systems. The recent multilayer approach for modelling networked systems explicitly allows the incorporation of multiplexity and other features of realistic systems. It allows one to couple different structural relationships by encoding them in a convenient mathematical object. It also allows one to couple different dynamical processes on top of such interconnected structures. The resulting framework plays a crucial role in helping to achieve a thorough, accurate understanding of complex systems. The study of multilayer networks has also revealed new physical phenomena that remain hidden when using ordinary graphs, the traditional network representation. Here we survey progress towards attaining a deeper understanding of spreading processes on multilayer networks, and we highlight some of the physical phenomena related to spreading processes that emerge from multilayer structure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Multilayer networks.
Figure 2: Dynamical processes on multilayer networks.
Figure 3: Single dynamics on a multilayer network.
Figure 4: Coupled dynamics on multilayer networks.

Change history

  • 23 February 2018

    In the version of this Progress Article originally published, the left and right panels of Fig. 3, clarifying the details indicated within the centre panel, were mistakenly interchanged. This has now been corrected in all versions of the Progress Article.

References

  1. 1

    Newman, M. E. J. Networks: An Introduction (Oxford Univ. Press, 2010).

    Google Scholar 

  2. 2

    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  3. 3

    Wasserman, S. & Faust, K. Social Network Analysis: Methods and Applications (Cambridge Univ. Press, 1994).

    Google Scholar 

  4. 4

    Kivelä, M. et al. Multilayer networks. J. Comp. Netw. 2, 203–271 (2014).

    Article  Google Scholar 

  5. 5

    Boccaletti, S. et al. The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122 (2014).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6

    Gallotti, R. & Barthelemy, M. Anatomy and efficiency of urban multimodal mobility. Sci. Rep. 4, 6911 (2014).

    ADS  Article  Google Scholar 

  7. 7

    Pilosof, S., Porter, M. A. & Kéfi, S. Ecological multilayer networks: a new frontier for network ecology. Preprint at http://arXiv.org/abs/1511.04453 (2015).

  8. 8

    Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    Article  Google Scholar 

  9. 9

    Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010).

    ADS  Article  Google Scholar 

  10. 10

    Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2012).

    Article  Google Scholar 

  11. 11

    Baxter, G. J., Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Avalanche collapse of interdependent networks. Phys. Rev. Lett. 109, 248701 (2012).

    ADS  Article  Google Scholar 

  12. 12

    Son, S.-W., Bizhani, G., Christensen, C., Grassberger, P. & Paczuski, M. Percolation theory on interdependent networks based on epidemic spreading. Europhys. Lett. 97, 16006 (2012).

    ADS  Article  Google Scholar 

  13. 13

    Bianconi, G. & Dorogovtsev, S. N. Multiple percolation transitions in a configuration model of a network of networks. Phys. Rev. E 89, 062814 (2014).

    ADS  Article  Google Scholar 

  14. 14

    Min, B., Yi, S. D., Lee, K.-M. & Goh, K.-I. Network robustness of multiplex networks with interlayer degree correlations. Phys. Rev. E 89, 042811 (2014).

    ADS  Article  Google Scholar 

  15. 15

    Hackett, A., Cellai, D., Gómez, S., Arenas, A. & Gleeson, J. P. Bond percolation on multiplex networks. Phys. Rev. X 6, 021002 (2016).

    Google Scholar 

  16. 16

    De Domenico, M. et al. Mathematical formulation of multi-layer networks. Phys. Rev. X 3, 041022 (2013).

    Google Scholar 

  17. 17

    Sola, L. et al. Eigenvector centrality of nodes in multiplex networks. Chaos 3, 033131 (2013).

    ADS  MATH  Article  Google Scholar 

  18. 18

    Halu, A., Mondragon, R. J., Panzarasa, P. & Bianconi, G. Multiplex pagerank. PLoS ONE 8, e78293 (2013).

    ADS  Article  Google Scholar 

  19. 19

    Battiston, F., Nicosia, V. & Latora, V. Structural measures for multiplex networks. Phys. Rev. E 89, 032804 (2014).

    ADS  Article  Google Scholar 

  20. 20

    De Domenico, M., Solé-Ribalta, A., Omodei, E., Gómez, S. & Arenas, A. Ranking in interconnected multilayer networks reveals versatile nodes. Nat. Commun. 6, 6868 (2015).

    ADS  Article  Google Scholar 

  21. 21

    Cozzo, E. et al. Structure of triadic relations in multiplex networks. New J. Phys. 17, 073029 (2015).

    ADS  Article  Google Scholar 

  22. 22

    Bianconi, G. Statistical mechanics of multiplex networks: entropy and overlap. Phys. Rev. E 87, 062806 (2013).

    ADS  Article  Google Scholar 

  23. 23

    Menichetti, G., Remondini, D., Panzarasa, P., Mondragón, R. J. & Bianconi, G. Weighted multiplex networks. PLoS ONE 9, e97857 (2014).

    ADS  Article  Google Scholar 

  24. 24

    Cardillo, A. et al. Emergence of network features from multiplexity. Sci. Rep. 3, 1344 (2013).

    Article  Google Scholar 

  25. 25

    Braun, U. et al. Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc. Natl Acad. Sci. USA 112, 11678–11683 (2015).

    ADS  Article  Google Scholar 

  26. 26

    Morris, R. G. & Barthelemy, M. Transport on coupled spatial networks. Phys. Rev. Lett. 109, 128703 (2012).

    ADS  Article  Google Scholar 

  27. 27

    Solé-Ribalta, A., Gómez, S. & Arenas, A. Congestion induced by the structure of multiplex networks. Phys. Rev. Lett. 116, 108701 (2016).

    ADS  Article  Google Scholar 

  28. 28

    Wang, Z., Andrews, M. A., Wu, Z.-X., Wang, L. & Bauch, C. T. Coupled disease–behavior dynamics on complex networks: a review. Phys. Life Rev. 15, 1–29 (2015).

    ADS  Article  Google Scholar 

  29. 29

    Funk, S. et al. Nine challenges in incorporating the dynamics of behaviour in infectious diseases models. Epidemics 10, 21–25 (2015).

    Article  Google Scholar 

  30. 30

    Granell, C., Gómez, S. & Arenas, A. Dynamical interplay between awareness and epidemic spreading in multiplex networks. Phys. Rev. Lett. 111, 128701 (2013).

    ADS  Article  Google Scholar 

  31. 31

    Sanz, J., Xia, C.-Y., Meloni, S. & Moreno, Y. Dynamics of interacting diseases. Phys. Rev. X 4, 041005 (2014).

    Google Scholar 

  32. 32

    Lima, A., De Domenico, M., Pejovic, V. & Musolesi, M. Disease containment strategies based on mobility and information dissemination. Sci. Rep. 5, 10650 (2015).

    ADS  Article  Google Scholar 

  33. 33

    Gómez-Gardenes, J., Reinares, I., Arenas, A. & Floría, L. M. Evolution of cooperation in multiplex networks. Sci. Rep. 2, 620 (2012).

    ADS  Article  Google Scholar 

  34. 34

    Lee, K.-M., Min, B. & Goh, K.-I. Towards real-world complexity: an introduction to multiplex networks. Eur. Phys. J. B 88, 48 (2015).

    ADS  Article  Google Scholar 

  35. 35

    Salehi, M. et al. Spreading processes in multilayer networks. IEEE Trans. Netw. Sci. Eng. 2, 65–83 (2015).

    Article  Google Scholar 

  36. 36

    Wang, Z., Wang, L., Szolnoki, A. & Perc, M. Evolutionary games on multilayer networks: a colloquium. Eur. Phys. J. B 88, 124 (2015).

    ADS  Article  Google Scholar 

  37. 37

    Gallotti, R., Porter, M. A. & Barthelemy, M. Lost in transportation: information measures and cognitive limits in multilayer navigation. Sci. Adv. 2, e1500445 (2016).

    ADS  Article  Google Scholar 

  38. 38

    De Domenico, M., Nicosia, V., Arenas, A. & Latora, V. Structural reducibility of multilayer networks. Nat. Commun. 6, 6864 (2015).

    ADS  Article  Google Scholar 

  39. 39

    Mucha, P. J., Richardson, T., Macon, K., Porter, M. A. & Onnela, J.-P. Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876–878 (2010).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  40. 40

    Gauvin, L., Panisson, A. & Cattuto, C. Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach. PLoS ONE 9, e86028 (2014).

    ADS  Article  Google Scholar 

  41. 41

    De Domenico, M., Lancichinetti, A., Arenas, A. & Rosvall, M. Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. Phys. Rev. X 5, 011027 (2015).

    Google Scholar 

  42. 42

    Peixoto, T. P. Inferring the mesoscale structure of layered, edge-valued, and time-varying networks. Phys. Rev. E 92, 042807 (2015).

    ADS  Article  Google Scholar 

  43. 43

    Min, B., Do Yi, S., Lee, K.-M. & Goh, K.-I. Network robustness of multiplex networks with interlayer degree correlations. Phys. Rev. E 89, 042811 (2014).

    ADS  Article  Google Scholar 

  44. 44

    Reis, S. D. et al. Avoiding catastrophic failure in correlated networks of networks. Nat. Phys. 10, 762–767 (2014).

    Article  Google Scholar 

  45. 45

    Nicosia, V. & Latora, V. Measuring and modeling correlations in multiplex networks. Phys. Rev. E 92, 032805 (2015).

    ADS  Article  Google Scholar 

  46. 46

    De Domenico, M., Solé-Ribalta, A., Gómez, S. & Arenas, A. Navigability of interconnected networks under random failures. Proc. Natl Acad. Sci. USA 111, 8351–8356 (2014).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  47. 47

    Gómez-Gardeñes, J., de Domenico, M., Gutiérrez, G., Arenas, A. & Gómez, S. Layer–layer competition in multiplex complex networks. Phil. Trans. R. Soc. A 373, 20150117 (2015).

    ADS  Article  Google Scholar 

  48. 48

    Radicchi, F. & Arenas, A. Abrupt transition in the structural formation of interconnected networks. Nat. Phys. 9, 717–720 (2013).

    Article  Google Scholar 

  49. 49

    Radicchi, F. Driving interconnected networks to supercriticality. Phys. Rev. X 4, 021014 (2014).

    Google Scholar 

  50. 50

    Gómez, S. et al. Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110, 028701 (2013).

    ADS  Article  Google Scholar 

  51. 51

    Sole-Ribalta, A. et al. Spectral properties of the Laplacian of multiplex networks. Phys. Rev. E 88, 032807 (2013).

    ADS  Article  Google Scholar 

  52. 52

    Chung, F. R. K. Spectral Graph Theory 2nd edn (American Mathematical Society, 1997).

    Google Scholar 

  53. 53

    Kolda, T. G. & Bader, B. W. Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  54. 54

    Bazzi, M. et al. Community detection in temporal multilayer networks, with an application to correlation networks. Multisc. Model. Simul. 14, 1–41 (2016).

    MathSciNet  MATH  Article  Google Scholar 

  55. 55

    Taylor, D., Myers, S. A., Clauset, A., Porter, M. A. & Mucha, P. J. Eigenvector-based centrality measures for temporal networks. Preprint at http://arXiv.org/abs/1507.01266 (2015).

  56. 56

    Aldous, D. & Fill, J. A. Reversible Markov Chains and Random Walks on Graphs Unfinished monograph, recompiled 2014 (2002); https://www.stat.berkeley.edu/aldous/RWG/book.html

  57. 57

    Gleich, D. F. PageRank beyond the Web. SIAM Rev. 57, 321–363 (2015).

    MathSciNet  MATH  Article  Google Scholar 

  58. 58

    Guimerà, R., Díaz-Guilera, A., Vega-Redondo, F., Cabrales, A. & Arenas, A. Optimal network topologies for local search with congestion. Phys. Rev. Lett. 89, 248701 (2002).

    ADS  Article  Google Scholar 

  59. 59

    Zhao, L., Lai, Y.-C., Park, K. & Ye, N. Onset of traffic congestion in complex networks. Phys. Rev. E 71, 026125 (2005).

    ADS  Article  Google Scholar 

  60. 60

    Echenique, P., Gómez-Gardeñes, J. & Moreno, Y. Dynamics of jamming transitions in complex networks. Europhys. Lett. 71, 325 (2005).

    ADS  Article  Google Scholar 

  61. 61

    Tan, F., Wu, J., Xia, Y. & Chi, K. T. Traffic congestion in interconnected complex networks. Phys. Rev. E 89, 062813 (2014).

    ADS  Article  Google Scholar 

  62. 62

    Dickison, M., Havlin, S. & Stanley, H. E. Epidemics on interconnected networks. Phys. Rev. E 85, 066109 (2012).

    ADS  Article  Google Scholar 

  63. 63

    Cozzo, E., Banos, R. A., Meloni, S. & Moreno, Y. Contact-based social contagion in multiplex networks. Phys. Rev. E 88, 050801 (2013).

    ADS  Article  Google Scholar 

  64. 64

    Ferraz de Arruda, G., Cozzo, E., Peixoto, P. T., Rodrigues, F. A. & Moreno, Y. Epidemic spreading in interconnected networks: a continuous time approach. Preprint at http://arXiv.org/abs/1509.07054 (2015).

  65. 65

    Funk, S., Gilad, E., Watkins, C. & Jansen, V. A. A. The spread of awareness and its impact on epidemic outbreaks. Proc. Natl Acad. Sci. USA 106, 6872–6877 (2009).

    ADS  MATH  Article  Google Scholar 

  66. 66

    Granell, C., Gómez, S. & Arenas, A. Competing spreading processes on multiplex networks: awareness and epidemics. Phys. Rev. E 90, 012808 (2014).

    ADS  Article  Google Scholar 

  67. 67

    Sporns, O. & Betzel, R. F. Modular brain networks. Annu. Rev. Psychol. 15, 19.1–19.28 (2016).

    Google Scholar 

  68. 68

    De Domenico, M., Sasai, S. & Arenas, A. Mapping multiplex hubs in human functional brain network. Front. Neurosci. 10, 00326 (2016).

    Google Scholar 

  69. 69

    Papadopoulos, L., Puckett, J., Daniels, K. E. & Bassett, D. S. Evolution of network architecture in a granular material under compression. Preprint at http://arXiv.org/abs/1603.08159 (2016).

  70. 70

    Nicosia, V. & Latora, V. Measuring and modeling correlations in multiplex networks. Phys. Rev. E 92, 032805 (2015).

    ADS  Article  Google Scholar 

  71. 71

    Bargigli, L., Di Iasio, G., Infante, L., Lillo, F. & Pierobon, F. The multiplex structure of interbank networks. Quant. Financ. 15, 673–691 (2015).

    MathSciNet  MATH  Article  Google Scholar 

  72. 72

    de Sola Pool, I. & Kochen, M. Contacts and influence. Soc. Netw. 1, 5–51 (1978–1979).

    MathSciNet  Article  Google Scholar 

  73. 73

    Porter, M. A. & Gleeson, J. P. Dynamical Systems on Networks: A Tutorial (Frontiers in Applied Dynamical Systems: Reviews and Tutorials Vol. 4, Springer, 2016).

    Google Scholar 

  74. 74

    Sorrentino, F. Synchronization of hypernetworks of coupled dynamical systems. New J. Phys. 14, 033035 (2012).

    ADS  Article  Google Scholar 

  75. 75

    Tang, Y., Qian, F., Gao, H. & Kurths, J. Synchronization in complex networks and its application—a survey of recent advances and challenges. Annu. Rev. Control 38, 184–198 (2014).

    Article  Google Scholar 

  76. 76

    Zhang, X., Boccaletti, S., Guan, S. & Liu, Z. Explosive synchronization in adaptive and multilayer networks. Phys. Rev. Lett. 114, 038701 (2015).

    ADS  Article  Google Scholar 

  77. 77

    Sevilla-Escoboza, R. et al. Enhancing the stability of the synchronization of multivariable coupled oscillators. Phys. Rev. E 92, 032804 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  78. 78

    Asllani, M., Busiello, D. M., Carletti, T., Fanelli, D. & Planchon, G. Turing patterns in multiplex networks. Phys. Rev. E 90, 042814 (2014).

    ADS  Article  Google Scholar 

  79. 79

    Kouvaris, N., Hata, S. & Diaz-Guilera, A. Pattern formation in multiplex networks. Sci. Rep. 5, 10840 (2015).

    ADS  Article  Google Scholar 

  80. 80

    Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A. & Boguñá, M. Hyperbolic geometry of complex networks. Phys. Rev. E 82, 036106 (2010).

    ADS  MathSciNet  Article  Google Scholar 

  81. 81

    Brockmann, D. & Helbing, D. The hidden geometry of complex, network-driven contagion phenomena. Science 342, 1337–1342 (2013).

    ADS  Article  Google Scholar 

  82. 82

    Wu, Z., Menichetti, G., Rahmede, C. & Bianconi, G. Emergent complex network geometry. Sci. Rep. 5, 10073 (2015).

    ADS  Article  Google Scholar 

  83. 83

    Barthelemy, M. Spatial networks. Phys. Rep. 499, 1–101 (2011).

    ADS  MathSciNet  Article  Google Scholar 

  84. 84

    Abraham, I., Chechik, S., Kempe, D. & Slivkins, A. Low-distortion inference of latent similarities from a multiplex social network. SIAM J. Comput. 44, 617–668 (2015).

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

All authors were funded by FET-Proactive project PLEXMATH (FP7-ICT-2011-8; grant #317614) funded by the European Commission. M.D.D. acknowledges financial support from the Spanish programme Juan de la Cierva (IJCI-2014–20225). C.G. acknowledges financial support from a James S. McDonnell Foundation postdoctoral fellowship. A.A. acknowledges financial support from the ICREA Academia, the James S. McDonnell Foundation, and FIS2015–38266. M.A.P. acknowledges a grant (EP/J001759/1) from the EPSRC. The authors acknowledge help from S. Agnello on the creative design of figures.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Manlio De Domenico or Alex Arenas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Domenico, M., Granell, C., Porter, M. et al. The physics of spreading processes in multilayer networks. Nature Phys 12, 901–906 (2016). https://doi.org/10.1038/nphys3865

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing