Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chiral tunnelling and the Klein paradox in graphene

Abstract

The so-called Klein paradox—unimpeded penetration of relativistic particles through high and wide potential barriers—is one of the most exotic and counterintuitive consequences of quantum electrodynamics. The phenomenon is discussed in many contexts in particle, nuclear and astro-physics but direct tests of the Klein paradox using elementary particles have so far proved impossible. Here we show that the effect can be tested in a conceptually simple condensed-matter experiment using electrostatic barriers in single- and bi-layer graphene. Owing to the chiral nature of their quasiparticles, quantum tunnelling in these materials becomes highly anisotropic, qualitatively different from the case of normal, non-relativistic electrons. Massless Dirac fermions in graphene allow a close realization of Klein’s gedanken experiment, whereas massive chiral fermions in bilayer graphene offer an interesting complementary system that elucidates the basic physics involved.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Tunnelling through a potential barrier in graphene.
Figure 2: Klein-like quantum tunnelling in graphene systems.
Figure 3: Chiral versus non-chiral tunnelling.
Figure 4: The chiral nature of quasiparticles in graphene strongly affects its transport properties.

References

  1. Klein, O. Die reflexion von elektronen an einem potentialsprung nach der relativistischen dynamik von Dirac. Z. Phys. 53, 157–165 (1929).

    Article  ADS  Google Scholar 

  2. Greiner, W., Mueller, B. & Rafelski, J. Quantum Electrodynamics of Strong Fields (Springer, Berlin, 1985).

    Book  Google Scholar 

  3. Grib, A. A., Mamayev, S. G. & Mostepanenko, V. M. Vacuum Effects in Strong Fields (Friedmann, St-Petersburg, 1994).

    Google Scholar 

  4. Su, R. K., Siu, G. C. & Chou, X. Barrier penetration and Klein paradox. J. Phys. A 26, 1001–1005 (1993).

    Article  ADS  Google Scholar 

  5. Dombey, N. & Calogeracos, A. Seventy years of the Klein paradox. Phys. Rep. 315, 41–58 (1999).

    Article  ADS  Google Scholar 

  6. Calogeracos, A. & Dombey, N. History and physics of the Klein paradox. Contemp. Phys. 40, 313–321 (1999).

    Article  ADS  Google Scholar 

  7. Krekora, P., Su, Q. & Grobe, R. Klein paradox in spatial and temporal resolution. Phys. Rev. Lett. 92, 040406 (2004).

    Article  ADS  Google Scholar 

  8. Page, D. N. Hawking radiation and black hole thermodynamics. New J. Phys. 7, 203 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  9. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  10. Slonczewski, J. C. & Weiss, P. R. Band structure of graphite. Phys. Rev. 109, 272 (1958).

    Article  ADS  Google Scholar 

  11. Semenoff, G. W. Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 53, 2449–2452 (1984).

    Article  ADS  Google Scholar 

  12. Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  13. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  14. Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  15. Vonsovsky, S. V. & Katsnelson, M. I. Quatum Solid State Physics (Springer, Berlin, 1989) Sect. 4.6.6.

    Book  Google Scholar 

  16. Boyanovsky, D., Blankenbecler, R. & Yahalom, R. Physical origin of topological mass in 2+1 dimensions. Nucl. Phys. B 270, 483–505 (1986).

    Article  ADS  Google Scholar 

  17. Ando, T., Nakanishi, T. & Saito, R. Berry’s phase and absence of back scattering in carbon nanotubes. J. Phys. Soc. Japan 67, 2857–2862 (1998).

    Article  ADS  Google Scholar 

  18. McEuen, P. L., Bockrath, M., Cobden, D. H., Yoon, Y. G. & Louie, S. G. Disorder, pseudospins, and backscattering in carbon nanotubes. Phys. Rev. Lett. 83, 5098–5101 (1999).

    Article  ADS  Google Scholar 

  19. Tworzydlo, J., Trauzettel, B., Titov, M., Rycerz, A. & Beenakker, C. W. J. Quantum-limited shot noise in graphene. Phys. Rev. Lett. 96, 246802 (2006).

    Article  ADS  Google Scholar 

  20. Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nature Phys. 2, 177–180 (2006).

    Article  ADS  Google Scholar 

  21. McCann, E. & Falko, V. I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006).

    Article  ADS  Google Scholar 

  22. Esaki, L. New phenomenon in narrow germanium para-normal-junctions. Phys. Rev. 109, 603–604 (1958).

    Article  ADS  Google Scholar 

  23. Meyer, J. R., Hoffman, C. A., Bartoli, F. J. & Rammohan, L. R. Type-II quantum-well lasers for the midwavelength infrared. Appl. Phys. Lett. 67, 757–759 (1995).

    Article  ADS  Google Scholar 

  24. Teissier, R. et al. Experimental determination of gamma-X intervalley transfer mechanisms in GaAs/AlAs heterostructures. Phys. Rev. B 54, 8329–8332 (1996).

    Article  ADS  Google Scholar 

  25. Ziman, J. M. Models of Disorder (Cambridge Univ. Press, Cambridge, 1979).

    Google Scholar 

  26. Lifshitz, I. M., Gredeskul, S. A. & Pastur, L. A. Introduction to the Theory of Disordered Systems (Wiley, New York, 1988).

    Google Scholar 

  27. Lee, P. A., Altshuler, B. L. & Webb, R. A. (eds) Mesoscopic Phenomena in Solids (North-Holland, Amsterdam, 1991).

  28. Berry, M. V. & Mondragon, R. J. Neutrino billiards—time reversal symmetry-breaking without magnetic fields. Proc. R. Soc. London A 412, 53–74 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  29. Spector, J., Stormer, H. L., Baldwin, K. W., Pfeiffer, L. N. & West, K. W. Electron focusing in 2-dimensional systems by means of an electrostatic lens. Appl. Phys. Lett. 56, 1290–1292 (1990).

    Article  ADS  Google Scholar 

  30. Dragoman, D. & Dragoman, M. Optical analogue structures to mesoscopic devices. Prog. Quantum Electron. 23, 131–188 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to A. C. Neto, V. Fal’ko, P. Guinea and D. Khveshchenko for illuminating discussions. This work was supported by EPSRC (UK) and FOM (Netherlands).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. I. Katsnelson or A. K. Geim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Katsnelson, M., Novoselov, K. & Geim, A. Chiral tunnelling and the Klein paradox in graphene. Nature Phys 2, 620–625 (2006). https://doi.org/10.1038/nphys384

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys384

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing