Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anti-parity–time symmetry with flying atoms

Abstract

The recently developed notion of parity–time (PT) symmetry in optical systems has spawned intriguing prospects. So far, most experimental implementations have been reported in solid-state systems. Here, we report the first experimental demonstration of optical anti-PT symmetry—the counterpart of conventional PT symmetry—in a warm atomic-vapour cell. Rapid coherence transport via flying atoms leads to a dissipative coupling between two long-lived atomic spin waves, allowing for the observation of the essential features of anti-PT symmetry with unprecedented precision on the phase-transition threshold, as well as refractionless light propagation. Moreover, we show that a linear or nonlinear interaction between the two spatially separated beams can be achieved. Our results advance non-Hermitian physics by bridging to the field of atomic, molecular and optical physics, where new phenomena and applications in quantum and nonlinear optics aided by (anti-)PT symmetry could be anticipated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anti-PT-symmetric optics via rapid atomic-coherence transport in a warm 87Rb vapour cell.
Figure 2: Representative transmission spectra of output probe light in anti-PT symmetry.
Figure 3: Anti-PT supermodes in coupled-EIT channels in a homogeneous, warm 87Rb vapour cell.
Figure 4: Theoretical calculation and experimental demonstration of refractionless propagation of light (n = 1 + Re[χ]/2 = 1) assisted by anti-PT symmetry in the symmetry-unbroken regime.
Figure 5: Observation of interference between two EIT channels by manipulating the relative-phase difference among laser beams.
Figure 6: Proposal for effective nonlinear interaction between two weak-probe fields aided by anti-PT-symmetric coupling of spin waves.

Similar content being viewed by others

References

  1. Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    ADS  MathSciNet  MATH  Google Scholar 

  2. Bender, C. M., Boettcher, S. & Meisinger, P. N. PT-symmetric quantum mechanics. J. Math. Phys. 40, 2201–2229 (1999).

    ADS  MathSciNet  MATH  Google Scholar 

  3. Bender, C. M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007).

    ADS  MathSciNet  Google Scholar 

  4. Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 43, 205–214 (2002).

    ADS  MathSciNet  MATH  Google Scholar 

  5. El-Ganainy, R., Makris, K. G., Christodoulides, D. N. & Musslimani, Z. H. Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632–2634 (2007).

    ADS  Google Scholar 

  6. Guo, A. et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

    ADS  Google Scholar 

  7. Ruter, C. E. et al. Observation of parity–time symmetry in optics. Nature Phys. 6, 192–195 (2010).

    ADS  Google Scholar 

  8. Bittner, S. et al. PT symmetry and spontaneous symmetry breaking in a microwave billiard. Phys. Rev. Lett. 108, 024101 (2012).

    ADS  Google Scholar 

  9. Regensburger, A. et al. Parity–time synthetic photonic lattices. Nature 488, 167–171 (2012).

    ADS  Google Scholar 

  10. Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity–time metamaterial at optical frequencies. Nature Mater. 12, 108–113 (2013).

    ADS  Google Scholar 

  11. Sun, Y., Li, H.-q., Li, J. & Chen, H. Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys. Rev. Lett. 112, 143903 (2014).

    ADS  Google Scholar 

  12. Wimmer, M. et al. Observation of optical solitons in PT-symmetric lattices. Nature Commun. 6, 7782 (2015).

    ADS  Google Scholar 

  13. Chang, L. et al. Parity–time symmetry and variable optical isolation in active-passive-coupled microresonantors. Nature Photon. 8, 524–529 (2014).

    ADS  Google Scholar 

  14. Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity–time-symmetric microring lasers. Science 346, 975–978 (2014).

    ADS  Google Scholar 

  15. Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).

    ADS  Google Scholar 

  16. Lin, Z. et al. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011).

    ADS  Google Scholar 

  17. Longhi, S. Invisibility in PT-symmetric complex crystals. J. Phys. A 44, 485302 (2011).

    MathSciNet  MATH  Google Scholar 

  18. Mostafazadeh, A. Invisibility and PT symmetry. Phys. Rev. A 87, 485302 (2011).

    Google Scholar 

  19. Longhi, S. Bloch oscillations in complex crystals with PT symmetry. Phys. Rev. Lett. 103, 123601 (2009).

    ADS  Google Scholar 

  20. Longhi, S. PT-symmetric laser absorber. Phys. Rev. A 82, 031801(R) (2010).

    ADS  Google Scholar 

  21. Chong, Y. D., Ge, L. & Stone, A. D. PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011).

    ADS  Google Scholar 

  22. Nazari, F., Nazari, M. & Morawej-Farshi, M. K. A 2 × 2 spatial optical switch based on PT-symmetry. Opt. Lett. 36, 4368–4370 (2011).

    ADS  Google Scholar 

  23. Sukhorukov, A. A., Xu, Z. Y. & Kivshar, Y. S. Nonlinear suppression of time reversals in PT-symmetric optical couplers. Phys. Rev. A 82, 043818 (2010).

    ADS  Google Scholar 

  24. Miri, M., Wa, P. & Christodoulides, D. N. Large area single-mode parity–time-symmetric laser amplifiers. Opt. Lett. 37, 764–766 (2012).

    ADS  Google Scholar 

  25. Benisty, H. et al. Implementation of PT symmetric devices using plasmonics: principle and applications. Opt. Exp. 19, 18004–18019 (2011).

    ADS  Google Scholar 

  26. Bender, N. et al. Observation of asymmetric transport in structures with active nonlinearities. Phys. Rev. Lett. 110, 234101 (2013).

    ADS  Google Scholar 

  27. Fleury, R., Sounas, D. & Alu, A. An invisible acoustic sensor based on parity–time symmetry. Nature Commun. 6, 5905 (2015).

    ADS  Google Scholar 

  28. Berry, M. V. Optical lattices with PT symmetry are not transparent. J. Phys. A 41, 244007 (2008).

    ADS  MathSciNet  MATH  Google Scholar 

  29. Lü, X.-Y., Jing, H., Ma, J.-Y. & Wu, Y. PT-symmetry breaking chaos in optomechanics. Phys. Rev. Lett. 114, 253601 (2015).

    ADS  Google Scholar 

  30. Ge, L. & Tureci, H. E. Antisymmetric PT-photonic structures with balanced positive-negative-index materials. Phys. Rev. A 88, 053810 (2013).

    ADS  Google Scholar 

  31. Wu, J.-H., Artoni, M. & La Rocca, G. C. Parity–time-antisymmetric atomic lattices without gain. Phys. Rev. A 91, 033811 (2015).

    ADS  Google Scholar 

  32. Hang, C., Huang, G. & Konotop, V. V. PT-symmetry with a system of three-level atoms. Phys. Rev. Lett. 110, 083604 (2013).

    ADS  Google Scholar 

  33. Sheng, J., Miri, M.-A., Christodoulides, D. N. & Xiao, M. PT-symmetric optical potentials in a coherent atomic medium. Phys. Rev. A 88, 041803(R) (2013).

    ADS  Google Scholar 

  34. Li, H., Dou, J. & Huang, G. PT symmetry via electromagnetically induced transparency. Opt. Express 21, 32053–32062 (2013).

    ADS  Google Scholar 

  35. Harris, S. E. Electromagnetically induced transparency. Phys. Today 50 (7), 36–42 (1997).

    ADS  Google Scholar 

  36. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    ADS  Google Scholar 

  37. Wen, J., Du, S., Chen, H. & Xiao, M. Electromagnetically induced Talbot effect. Appl. Phys. Lett. 98, 081108 (2012).

    ADS  Google Scholar 

  38. Xiao, Y. et al. Slow light beam splitter. Phys. Rev. Lett. 101, 043601 (2008).

    ADS  Google Scholar 

  39. Feng, L., Li, P., Jiang, L., Wen, J. & Xiao, Y. Coherence-assisted resonance with sub-transit-limited linewidth. Phys. Rev. Lett. 109, 233006 (2012).

    ADS  Google Scholar 

  40. Ling, H., Li, Y. & Xiao, M. Electromagnetically induced grating: homogeneously broadened medium. Phys. Rev. A 57, 1338–1344 (1998).

    ADS  Google Scholar 

  41. Liertzer, M. et al. Pump-induced exceptional points in lasers. Phys. Rev. Lett. 108, 173901 (2012).

    ADS  Google Scholar 

  42. Ramezni, H., Kottos, T., Kovanis, V. & Christodoulides, D. N. Exceptional-point dynamics in photonic honeycomb lattices with PT symmetry. Phys. Rev. A 85, 013818 (2012).

    ADS  Google Scholar 

  43. Cao, H. & Wiersig, J. Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys. 87, 61–111 (2015).

    ADS  MathSciNet  Google Scholar 

  44. Rotter, I. A non-Hermitian Hamiltonian operator and the physics of open quantum systems. J. Phys. A 42, 153001 (2009).

    ADS  MathSciNet  MATH  Google Scholar 

  45. Moiseyev, N. Non-Hermitian Quantum Mechanics (Cambridge Univ. Press, 2011).

    MATH  Google Scholar 

  46. Rotter, I. & Bird, J. P. A review of progress in the physics of open quantum systems: theory and experiment. Rep. Prog. Phys. 78, 114001 (2015).

    ADS  Google Scholar 

  47. Robinson, H. G., Ensberg, E. S. & Dehmelt, H. G. Preservation of a spin state in free atom inert surface collisions. Bull. Am. Phys. Soc. 3, 9 (1958).

    Google Scholar 

  48. Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge Univ. Press, 1997).

    Google Scholar 

  49. Boyd, R. W. Nonlinear Optics (Academic, 2008).

    Google Scholar 

  50. Novikova, I., Walsworth, R. & Xiao, Y. Electromagnetically induced transparency-based slow and stored light in warm atoms. Laser Photon. Rev. 6, 333–353 (2012).

    ADS  Google Scholar 

  51. Xiao, Y., Novikova, I., Phillips, D. F. & Walsworth, R. L. Diffusion-induced Ramsey narrowing. Phys. Rev. Lett. 96, 043601 (2006).

    ADS  Google Scholar 

  52. Xiao, Y., Novikova, I., Phillips, D. F. & Walsworth, R. L. Repeated interaction model for diffusion-induced Ramsey narrowing. Opt. Express 16, 14128–14141 (2008).

    ADS  Google Scholar 

  53. Klein, M., Hohensee, M., Phillips, D. F. & Walsworth, R. L. Electromagnetically induced transparency in paraffin-coated vapor cells. Phys. Rev. A 83, 013826 (2011).

    ADS  Google Scholar 

  54. Xu, Z., Qu, W., Gao, R., Hu, X. & Xiao, Y. Linewidth of electromagnetically induced transparency under motional averaging in a coated vapor cell. Chinese Phys. B 22, 033202 (2013).

    ADS  Google Scholar 

  55. Budker, D. et al. Microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells. Phys. Rev. A 71, 012903 (2005).

    ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to V. V. Albert for reading the manuscript. This work is supported by National Key Research Program of China under Grant No. 2016YFA0302000, and NNSFC under Grant No. 11322436. J.W. and L.J. acknowledge funding support from the ARO, the AFSOR MURI, the ARL CDQI program, the Alfred P. Sloan Foundation, and the David and Lucile Packard Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.W., L.J. and Y.X. conceived the idea. Y.X. supervised the project. P.P. performed the experiment. W.C., P.P. and L.J. did the theoretical derivation and numerical calculations with contributions from all other authors. J.W., L.J. and Y.X. wrote the manuscript with contributions from all other authors. All contributed to the discussion of the project and analysis of the experimental data.

Corresponding authors

Correspondence to Jianming Wen, Liang Jiang or Yanhong Xiao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 889 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, P., Cao, W., Shen, C. et al. Anti-parity–time symmetry with flying atoms. Nature Phys 12, 1139–1145 (2016). https://doi.org/10.1038/nphys3842

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3842

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing