Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Holographic maps of quasiparticle interference

Abstract

The analysis of Fourier-transformed scanning tunnelling microscopy images with subatomic resolution is a common tool for studying the properties of quasiparticle excitations in strongly correlated materials. Although Fourier amplitudes are generally complex valued, earlier analysis primarily focused on their absolute values. Their complex phases were often deemed random, and thus irrelevant, due to the unknown positions of the impurities in the sample. Here we show how to factor out these random phases by analysing overlaps between Fourier amplitudes that differ by reciprocal lattice vectors. The resulting holographic maps provide important and previously unknown information about the electronic structures. When applied to superconducting cuprates, our method solves a long-standing puzzle of the dichotomy between equivalent wavevectors. We show that d-wave Wannier functions of the conduction band provide a natural explanation for experimental results that were interpreted as evidence for competing unconventional charge modulations. Our work opens a new pathway to identify the nature of electronic states in scanning tunnelling microscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Main steps and notations involved in the creation of holographic maps.
Figure 2: Experimentally measured holographic maps for an optimally doped sample of Bi2201 with critical temperature Tc = 35 K, at voltage V = 40 meV.
Figure 3: Schematic and theoretical g maps.
Figure 4: Theoretical holographic maps generated from the g map depicted in Fig. 3c.
Figure 5: Trial Wannier functions.

Similar content being viewed by others

References

  1. Sprunger, P., Petersen, L., Plummer, E., Lægsgaard, E. & Besenbacher, F. Giant Friedel oscillations on the beryllium (0001) surface. Science 275, 1764–1767 (1997).

    Article  Google Scholar 

  2. Podolsky, D., Demler, E., Damle, K. & Halperin, B. I. Translational symmetry breaking in the superconducting state of the cuprates: analysis of the quasiparticle density of states. Phys. Rev. B 67, 094514 (2003).

    Article  ADS  Google Scholar 

  3. Wang, Q.-H. & Lee, D.-H. Quasiparticle scattering interference in high-temperature superconductors. Phys. Rev. B 67, 020511 (2003).

    Article  ADS  Google Scholar 

  4. Capriotti, L., Scalapino, D. J. & Sedgewick, R. D. Wave-vector power spectrum of the local tunneling density of states: ripples in a d-wave sea. Phys. Rev. B 68, 014508 (2003).

    Article  ADS  Google Scholar 

  5. Polkovnikov, A., Vojta, M. & Sachdev, S. Pinning of dynamic spin-density-wave fluctuations in cuprate superconductors. Phys. Rev. B 65, 220509 (2002).

    Article  ADS  Google Scholar 

  6. Pereg-Barnea, T. & Franz, M. Theory of quasiparticle interference patterns in the pseudogap phase of the cuprate superconductors. Phys. Rev. B 68, 180506 (2003).

    Article  ADS  Google Scholar 

  7. Markiewicz, R. S. Bridging k and q space in the cuprates: comparing angle-resolved photoemission and STM results. Phys. Rev. B 69, 214517 (2004).

    Article  ADS  Google Scholar 

  8. Zhu, L., Atkinson, W. A. & Hirschfeld, P. J. Power spectrum of many impurities in a d-wave superconductor. Phys. Rev. B 69, 060503 (2004).

    Article  ADS  Google Scholar 

  9. Bena, C., Chakravarty, S., Hu, J. & Nayak, C. Quasiparticle scattering and local density of states in the d-density-wave phase. Phys. Rev. B 69, 134517 (2004).

    Article  ADS  Google Scholar 

  10. Hoffman, J. E. et al. Imaging quasiparticle interference in Bi2Sr2CaCu2O8+δ . Science 297, 1148–1151 (2002).

    Article  ADS  Google Scholar 

  11. McElroy, K. et al. Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ . Nature 422, 592–596 (2003).

    Article  ADS  Google Scholar 

  12. Hanaguri, T. et al. Coherence factors in a high-Tc cuprate probed by quasi-particle scattering off vortices. Science 323, 923–926 (2009).

    Article  ADS  Google Scholar 

  13. Vishik, I. et al. A momentum-dependent perspective on quasiparticle interference in Bi2Sr2CaCu2O8+δ . Nature Phys. 5, 718–721 (2009).

    Article  ADS  Google Scholar 

  14. Hänke, T. et al. Probing the unconventional superconducting state of LiFeAs by quasiparticle interference. Phys. Rev. Lett. 108, 127001 (2012).

    Article  ADS  Google Scholar 

  15. Hirschfeld, P. J., Altenfeld, D., Eremin, I. & Mazin, I. I. Robust determination of the superconducting gap sign structure via quasiparticle interference. Phys. Rev. B 92, 184513 (2015).

    Article  ADS  Google Scholar 

  16. Vonau, F. et al. Evidence of hole-electron quasiparticle interference in ErSi2 semimetal by Fourier-transform scanning tunneling spectroscopy. Phys. Rev. Lett. 95, 176803 (2005).

    Article  ADS  Google Scholar 

  17. Rutter, G. M. et al. Scattering and interference in epitaxial graphene. Science 317, 219–222 (2007).

    Article  ADS  Google Scholar 

  18. Roushan, P. et al. Topological surface states protected from backscattering by chiral spin texture. Nature 460, 1106–1109 (2009).

    Article  ADS  Google Scholar 

  19. Lee, J. et al. Heavy d-electron quasiparticle interference and real-space electronic structure of Sr3Ru2O7 . Nature Phys. 5, 800–804 (2009).

    Article  ADS  Google Scholar 

  20. Toldin, F. P., Figgins, J., Kirchner, S. & Morr, D. K. Disorder and quasiparticle interference in heavy-fermion materials. Phys. Rev. B 88, 081101 (2013).

    Article  ADS  Google Scholar 

  21. Chatterjee, U. et al. Nondispersive fermi arcs and the absence of charge ordering in the pseudogap phase of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 96, 107006 (2006).

    Article  ADS  Google Scholar 

  22. Kohsaka, Y. et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380–1385 (2007).

    Article  ADS  Google Scholar 

  23. Wise, W. D. et al. Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy. Nature Phys. 4, 696–699 (2008).

    Article  ADS  Google Scholar 

  24. Parker, C. V. et al. Fluctuating stripes at the onset of the pseudogap in the high-Tc superconductor Bi2Sr2CaCu2O8+x . Nature 468, 677–680 (2010).

    Article  ADS  Google Scholar 

  25. Fujita, K. et al. Spectroscopic imaging scanning tunneling microscopy studies of electronic structure in the superconducting and pseudogap phases of cuprate high-Tc superconductors. J. Phys. Soc. Jpn 81, 011005 (2012).

    Article  ADS  Google Scholar 

  26. Fujita, K. et al. Direct phase-sensitive identification of a d-form factor density wave in underdoped cuprates. Proc. Natl Acad. Sci. USA 111, E3026–E3032 (2014).

    Article  ADS  Google Scholar 

  27. Allais, A., Bauer, J. & Sachdev, S. Density wave instabilities in a correlated two-dimensional metal. Phys. Rev. B 90, 155114 (2014).

    Article  ADS  Google Scholar 

  28. Thomson, A. & Sachdev, S. Charge ordering in three-band models of the cuprates. Phys. Rev. B 91, 115142 (2015).

    Article  ADS  Google Scholar 

  29. Dalla Torre, E. G., He, Y., Benjamin, D. & Demler, E. Exploring quasiparticles in high-Tc cuprates through photoemission, tunneling, and X-ray scattering experiments. New J. Phys. 17, 022001 (2015).

    Article  ADS  Google Scholar 

  30. Dalla Torre, E. G., Benjamin, D., He, Y., Dentelski, D. & Demler, E. Friedel oscillations as a probe of fermionic quasiparticles. Phys. Rev. B 93, 205117 (2016).

    Article  ADS  Google Scholar 

  31. Allan, M. et al. Imaging cooper pairing of heavy fermions in CeCoIn5 . Nature Phys. 9, 468–473 (2013).

    ADS  Google Scholar 

  32. Pan, S. H. et al. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ . Nature 403, 746–750 (2000).

    Article  ADS  Google Scholar 

  33. Hudson, E. W. et al. Interplay of magnetism and high-Tc superconductivity at individual Ni impurity atoms in Bi2Sr2CaCu2O8+δ . Nature 411, 920–924 (2001).

    Article  ADS  Google Scholar 

  34. Zeljkovic, I. et al. Imaging the impact of single oxygen atoms on superconducting Bi2+ySr2−yCaCu2O8+x . Science 337, 320–323 (2012).

    Article  ADS  Google Scholar 

  35. Hamidian, M. H. et al. Picometer registration of zinc impurity states in Bi2Sr2CaCu2O8+δ for phase determination in intra-unit-cell Fourier transform STM. New J. Phys. 14, 053017 (2012).

    Article  ADS  Google Scholar 

  36. Richardella, A. et al. Visualizing critical correlations near the metal–insulator transition in Ga1−xMnxAs. Science 327, 665–669 (2010).

    Article  ADS  Google Scholar 

  37. Hoffman, J. E. et al. A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ . Science 295, 466–469 (2002).

    Article  ADS  Google Scholar 

  38. Howald, C., Eisaki, H., Kaneko, N., Greven, M. & Kapitulnik, A. Periodic density-of-states modulations in superconducting Bi2Sr2CaCu2O8+δ . Phys. Rev. B 67, 014533 (2003).

    Article  ADS  Google Scholar 

  39. Hanaguri, T. et al. A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca2−xNaxCuO2Cl2 . Nature 430, 1001–1005 (2004).

    Article  ADS  Google Scholar 

  40. Vershinin, M. et al. Local ordering in the pseudogap state of the high-Tc superconductor Bi2Sr2CaCu2O8+δ . Science 303, 1995–1998 (2004).

    Article  ADS  Google Scholar 

  41. He, Y. et al. Fermi surface and pseudogap evolution in a cuprate superconductor. Science 344, 608–611 (2014).

    Article  ADS  Google Scholar 

  42. Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y, Nd)Ba2Cu3O6+x . Science 337, 821–825 (2012).

    Article  ADS  Google Scholar 

  43. Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67 . Nature Phys. 8, 871–876 (2012).

    Article  ADS  Google Scholar 

  44. Comin, R. & Damascelli, A. Resonant X-ray scattering studies of charge order in cuprates. Ann. Rev. Condens. Matter Phys. 7, 369–405 (2016).

    Article  ADS  Google Scholar 

  45. Grissonnanche, G. et al. Onset field for Fermi-surface reconstruction in the cuprate superconductor YBCO. Preprint at http://arXiv.org/abs/1508.05486 (2015).

  46. Gerber, S. et al. Three-dimensional charge density wave order in YBa2Cu3O6.67 at high magnetic fields. Science 350, 949–952 (2015).

    Article  Google Scholar 

  47. Julien, M.-H. Magnetic fields make waves in cuprates. Science 350, 914–915 (2015).

    Article  Google Scholar 

  48. Larson, B. C. et al. Nonresonant inelastic X-ray scattering and energy-resolved Wannier function investigation of d-d excitations in NiO and CoO. Phys. Rev. Lett. 99, 026401 (2007).

    Article  ADS  Google Scholar 

  49. Choubey, P., Berlijn, T., Kreisel, A., Cao, C. & Hirschfeld, P. J. Visualization of atomic-scale phenomena in superconductors: application to FeSe. Phys. Rev. B 90, 134520 (2014).

    Article  ADS  Google Scholar 

  50. Kreisel, A. et al. Interpretation of scanning tunneling quasiparticle interference and impurity states in cuprates. Phys. Rev. Lett. 114, 217002 (2015).

    Article  ADS  Google Scholar 

  51. Wu, T. et al. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy . Nature 477, 191–194 (2011).

    Article  ADS  Google Scholar 

  52. Wu, T. et al. Emergence of charge order from the vortex state of a high-temperature superconductor. Nature Commun. 4, 2113 (2013).

    Article  ADS  Google Scholar 

  53. Zhang, F. & Rice, T. Effective hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37, 3759–3761 (1988).

    Article  ADS  Google Scholar 

  54. Hamidian, M. et al. Atomic-scale electronic structure of the cuprate d-symmetry form factor density wave state. Nature Phys. 12, 150–156 (2015).

    Article  ADS  Google Scholar 

  55. Hamidian, M. H. et al. Magnetic-field induced interconversion of Cooper pairs and density wave states within cuprate composite order. Preprint at http://arXiv.org/abs/1508.00620 (2015).

  56. Machida, T. et al. Bipartite electronic superstructures in the vortex core of Bi2Sr2CaCu2O8+δ . Nature Commun. 7, 11747 (2016).

    Article  ADS  Google Scholar 

  57. Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenological models for the gap anisotropy of Bi2Sr2CaCu2O8 as measured by angle-resolved photoemission spectroscopy. Phys. Rev. B 52, 615–622 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Boyer, K. Chatterjee, E. Hudson and D. Wise for giving us access to their unpublished experimental data. We acknowledge useful discussions with E. Altman, S. Davis, J. Hoffman, E. Hudson, R. Markiewicz, S. Sachdev and A. Stern. This work is supported by the Israel Science Foundation (grant No. 1542/14). E.D. acknowledges support from Harvard-MIT CUA, NSF Grant No. DMR-1308435, MURI-AFOSR, the ARO-MURI on Atomtronics, ARO MURI Qusim Program, M. Rossler, the Walter Haefner Foundation, the Humboldt Foundation, the Simons Foundation, and the ETH Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All three authors equally contributed to the present study. E.G.D.T., Y.H. and E.D. conceived the idea of holographic maps and demonstrated their relation to the Wannier functions, E.G.D.T. and Y.H. analysed the experimental data, E.G.D.T. performed the numerical calculations, E.G.D.T., Y.H. and E.D. wrote the manuscript.

Corresponding author

Correspondence to Emanuele G. Dalla Torre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2812 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalla Torre, E., He, Y. & Demler, E. Holographic maps of quasiparticle interference. Nature Phys 12, 1052–1056 (2016). https://doi.org/10.1038/nphys3829

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3829

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing